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ABSTRACT

The effects of shape and relative submergence (the ratio of flow depth to obstacle

height, d/H) were investigated on the wakes around four different low-aspect-ratio

wall-mounted obstacles semi-ellipsoids with the major axes of the base ellipses

aligned in the streamwise and transverse directions, two cylinders with aspect ra-

tios matching the ellipsoids. The wake structure of a fully submerged, spherical

obstacle was also investigated in the same flow conditions to provide insight into

the flow-obstacle interaction with implication to sediment transport. A low-aspect-

ratio semi-ellipsoid was chosen as broadly representative of a freshwater mussel

projecting from a river bed, and a sphere was employed as representative of a boul-

der. Two cylinders were used due to their similarity to geometries investigated in

other studies. Digital Particle Image Velocimetry and thermal anemometry were

used to interrogate the flow. For ellipsoids and cylinders, streamwise features

observed in the mean wake included counter-rotating distributions of vorticity

inducing downwash (tip structures), upwash (base structures), and horseshoe vor-

tices. In particular, the relatively subtle change in geometry produced by the

rotation of the ellipsoid from the streamwise to the transverse orientation resulted

in a striking modification of the mean streamwise vorticity distribution in the wake.

Tip structures were dominant in the former case while base structures were domi-

nant in the latter. A vortex skeleton model of the wake is proposed in which arch

vortex structures are deformed by the competing mechanisms of Biot-Savart self

induction and the external shear flow, making the ellipsoid wakes an archetypical

model for understanding more complicated wakes. The wake of the sphere, is

somewhat more complex than the ellipsoidal geometries. The knowledge from

the wake of ellipsoids was employed for sphere wake structures in which two

vertex pairs were found in the wake with the same sign as the horseshoe vor-

tices. Streamwise features observed in the mean wake including tip, horseshoe
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structures, and weak upwash. The shedding characteristics and dynamics of the

wake were examined. Weak, approximately symmetric shedding was observed in

the wakes of streamwise and transverse ellipsoids and sphere at d/H > 3 while

cross-spectral measurements confirmed downstream and upstream tilting of arch

structures shed by the transverse and streamwise ellipsoids, respectively. Much

weaker peaks in the power spectrum were observed for low- and high-aspect-ratio

cylinders. An inverse relationship was observed between the relative submer-

gence and the strength of the base structures for the ellipsoids. While the dominant

Strouhal number remained constant as the relative submergence was reduced to

d/H = 2.5 for the ellipsoids, it increased abruptly at d/H = 1 and transitioned to an

antisymmetric mode. For the sphere geometry at d/H = 3.5, a weak dominant fre-

quency was observed close to obstacle junction. The bed shear stress distribution

was estimated around the sphere for comparison with past and future studies on

sediment transport in open channel flow, demonstrating high values beneath the

lobes structures. These results demonstrate a means by which to achieve significant

modifications to flow structure and transport mechanisms in the flow.
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CHAPTER 1
INTRODUCTION

Wall-mounted bodies in boundary layer flows are ubiquitous in nature and

engineering applications such as nacelles and control surfaces on aircraft and un-

derwater vehicles, buildings and exhaust stacks, bivalves inhabiting river beds

and the ocean floor, and boulders, clusters and fish habitat structures in fluvial

environments. Despite their geometric simplicity, a single wall-mounted obsta-

cle in a boundary layer or channel flow creates an extremely complex, highly

three-dimensional and unsteady flow field for which the transport mechanisms of

momentum and scalars are still not well-understood (e.g. Martinuzzi and Tropea

(1993); Palau-Salvador et al. (2009)). It is now understood that the flow field about

a wall-mounted body is composed of a number of constituent vortex structures

which are qualitatively robust for different obstacle geometries (Pattenden et al.,

2005; Palau-Salvador et al., 2009) and interactions between these structures result in

very large oscillations, making shedding characteristics significant to transport in

this flow (Vlachos and Hajj, 2002). These local flow patterns around each obstacle,

resulting from an interaction between the obstacle and the surrounding flow field,

affect local transport of mass and momentum. An improved knowledge of the flow

will provide insight into the related momentum, mass, and heat transfer processes

in the vicinity of the body.

1.1 Motivation

The dissertation has been motivated by the need to better understand the fun-

damental fluid mechanics of the following topics:

1. Transport mechanisms in freshwater mussel populations.

2. Sediment transport in steep mountain streams and characterizing the effects

of relative submergence (the ratio of flow depth to obstacle height, d/H) on flow-

obstacle interaction such as bed shear stress distributions and mean flow.
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Toward those ends, this dissertation presents a fundamental study of semi-

ellipsoidal wall-mounted obstacle (representative of a fresh water mussel) and a

spherical obstacle (representative of a bolder in a fluvial environment). To provide

a basic understanding of these flows, flow structure and shedding characteristics

are examined.

The importance of the first motivation is consideration of freshwater mussels

as filter feeders. Mussels live at the water-sediment interface as shown in Fig. 1.1

and are believed to have a significant effect on water quality since they collectively

process very large volumes of water. In recent years, the level of nitrogen concen-

tration in the Mississippi River has elevated noticeably (Turner et al., 2008). The

rise is due to the increased plantation of corn in the upper Midwest region, aimed at

biofuel production as reported in National Center for Environmental Assessment

(NCEA, 2011).

Freshwater mussels have historically existed in large quantities in the Upper

Mississippi River (UMR). However, their populations have been declining substan-

tially over the past several decades, mirroring the decline in the general health of

the river due to factors which include overharvesting, destruction of habitats (e.g.

the development and maintenance of locks and dams on the Mississippi River),

pollution, and the introduction of invasive species (Strayer et al., 2004).

The local flow patterns around each mussel, which result from interaction be-

tween the mussel and the surrounding flow field, affect nutrient availability to

the mussel in a competitive environment, and therefore contribute to the turbu-

lent entrainment of nutrients into the benthic boundary layer, where nutrients are

depleted due to consumption.

For the first motivation study, semi-ellipsoids, broadly representative of a fresh-

water mussel projecting from a river bed, have been considered. In the process

of exploring these phenomena, the structures (vortices) have been observed in the
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Figure 1.1: Freshwater mussel on the river bed (internetstones.com)

mean flow, and a high degree of control over the presence and strength of these

vortices is demonstrated with changes in obstacle geometry. This serendipitous

discovery of flow structure manipulation has led to the fundamental investigation

that will be presented in this thesis and introduces an ellipsoidal geometries likely

as a useful canonical geometry.

In addition to unique findings in the controlling flow pattern, this study differs

from similar investigations in the geometry used for the experiments. Most inves-

tigations around bluff bodies have focused on isolated structures i.e. cylindrical or

prismatic bodies which have flat tops with sharp edges and thus well-defined sep-

aration lines. Ellipsoids are more aerodynamically-shaped and align themselves

with the flow. This study is, therefore, unique in its findings as they apply to

ellipsoid-shaped obstacles.

The second motivation is the existence of varying relative submergences in

mountain streams which yield strikingly different sediment depositional patterns.

In steep mountain streams (Fig. 1.2), naturally-occurring obstacles or boulders have

length scales comparable with flow depth and river width, introducing a parameter

named relative submergence, d/H, (where d is the flow depth and H is the obstacle

characteristic dimension). Findings in this area will give more insight on bed shear
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Figure 1.2: Steep mountain stream (Rocky Mountain river, Photo by: Rolf Hicker)

stress distributions, mean flow, and sediment depositional patterns surrounding

the obstacle and will elucidate the physical mechanisms governing these processes.

It may also help in the prediction of sediment transport in mountain stream.

The flow regimes that exist for the different relative submergences, especially

when d/H < 1, are suspected to have a large effect on the depositional patterns

compared with large d/H and rates of sediment. Papanicolaou and Kramer (2005)

have shown (Fig. 1.3) effects of different regimes of relative submergence on sed-

imentation and depositional patterns due to significant change in flow structures.

Further insight into the dominant flow structures can provide us with valuable

knowledge on prevalent issues of engineering including finding bed shear stress

distribution and cluster formation.

1.2 Thesis Objectives and Overview

In this thesis, the mean and dynamics of streamwise vorticity around low-

aspect-ratio wall-mounted obstacles were investigated. Experiments were con-

ducted to examine the effects of shape and relative submergence on the wakes of

different low-aspect-ratio wall-mounted obstacles such as semi-ellipsoids (broadly

representative of a freshwater mussel projecting from a river bed) and a sphere (rep-

resentative of a boulder). Particle Image Velocimetry (PIV) and thermal anemom-
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(a) Low Relative Submergence

(b) High Relative Submergence

Figure 1.3: Effect of relative submergence (RS) on depositional pattern: (top) LRS-
Low Relative Submergence-where particles deposit at the upstream face of the clast,
(bottom) HRS-High Relative Submergence-where particles deposit at the wake of
the clast (Papanicolaou and Kramer, 2005)

etry were employed to interrogate the flow. The sensitivity of the mean wake

vorticity distribution to obstacle shape and relative submergence, quantified in

this study, provides controls with which to further probe the dynamics of wake

structures and the related transport mechanisms.

To simplify the governing physics and despite boulders existing in an open-

channel environment, the experiments were conducted in a boundary layer flow.

This approach was taken in order to simplify the flow field and provide a bench-

mark for further work. This approach also facilitates comparison with previous

work which has most often been conducted in boundary layer flows. Equally im-

portant, this work aims at making fundamental contributions to the understanding
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of the flow field surrounding a wall-mounted obstacle, particularly focusing on the

evolution of flow structure with variation in shape and flow parameters such as

relative submergence.

Chapter 2 reviews the related research in the literature and discusses the mean

and dynamics of flow around low and high-aspect-ratio obstacles and controversies

related to conditions under which base vortices are observed in the wake of obsta-

cles. Chapter 3 describes the experimental methods and measurement techniques.

The streamwise features observed in the mean wake and their shedding behav-

ior for ellipsoidal and spherical geometries are demonstrated in Chapter 4 and 5,

respectively. In addition, the fact that relatively subtle changes in geometry can

provide such dramatic changes in flow patterns has implications for the transport

of momentum and scalars in applications of flow around wall-mounted bodies.

Based on the findings of the experiments, a vortex skeleton model is proposed for

ellipsoids which is supported by spectral analysis at the flow field. This vortex

skeleton model was found to be also largely applicable to the wake of the sphere,

with some modification to take into account the convex geometry of the sphere at

its interface with the base plane. Local bed shear stress measurements, estimated

from Reynolds stress, have been computed in the wake of the sphere to provide

insight into the sediment depositional patterns surrounding the obstacle. The bed

shear stress measurements reveal that two areas at the side and close to reattach-

ment length have the higher values. Finally, Chapter 6 includes conclusions and

suggestions for future work.
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CHAPTER 2
LITERATURE REVIEW

2.1 Flow Structure in the Wake of a Wall-Mounted
Bluff Body

Wall-mounted obstacles are ubiquitous in a broad range of natural and engi-

neered systems. Nevertheless, there are many aspects of this class of flows that

are still poorly understood due to the complexity of the resulting highly three-

dimensional unsteady flow and the sensitivity to a relatively large number of pa-

rameters including Reynolds number, obstacle characteristic length, aspect ratio,

boundary layer characteristics, and free stream turbulence (Baker, 1980; Martinuzzi

and Tropea, 1993).

2.2 Mean Flow Structure

The flow around two-dimensional cylindrical obstacles have been studied ex-

tensively. The characteristic of this flow include periodic alternate vortex shedding

from the sides of the obstacle, which form the Kármán vortex street. In general, the

behavior in the wake of a circular cylinder with finite height (one end free and the

other fixed on the ground) is markedly different from that of two-dimensional bluff

bodies (Etzold and Fiedler, 1976; Kawamura et al., 1984; Okamoto and Sunabashiri,

1992; Sumner et al., 2004). Several investigations have unveiled that the near wake

of wall-mounted bodies depend on aspect ratio, AR = H/D, where H and D are

the height and the characteristic width of a obstacle, respectively (Sakamoto and

Arie, 1983; Kawamura et al., 1984; Okamoto and Sunabashiri, 1992; Sumner et al.,

2004; Wang and Zhou, 2009). When H/D is less than critical value, vortex shedding

changes from the anti-symmetrical Kármán type to the symmetric arch type as

illustrated by Kawamura et al. (1984) in Fig. 2.1. For large-aspect-ratio cylindrical

geometries Kármán shedding is frequently observed in the base region for suffi-

ciently high aspect ratios, whereas symmetric shedding is present at the tip. The
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minimum aspect ratio required for the existence of quasi-two-dimensional regions

of Kármán shedding has been found to vary widely – between 1 and 7 in a range

of studies (Sakamoto and Arie, 1983; Kawamura et al., 1984; Uematsu et al., 1990;

Okamoto and Sunabashiri, 1992; Fox and West, 1993a,b; Sumner et al., 2004; bib;

Frederich et al., 2008; Sumner and Heseltine, 2008; Palau-Salvador et al., 2009).

Figure 2.1: Flow around a finite circular cylinder (3D view and plan view) (a)
AR > criticalAR, (b) AR ≤ criticalAR (from Kawamura et al. (1984)).

Fewer investigations have considered the flow structure in the wake of low-

aspect-ratio wall-mounted obstacles. The mean flow in the near wake of the

low-aspect-ratio obstacle is characterized by three dominant features that are qual-

itatively robust, as illustrated by Pattenden et al. (2005) in Fig.2.2: 1) a horseshoe

vortex that forms at the junction between the obstacle and ground plane upstream

of the obstacle, with legs that wrap around the obstacle and become primarily

streamwise in the wake; 2) the streamwise tip vortices that appear to emerge from
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the vicinity of the free end, and 3) the arch vortex consisting of the mean spanwise

vortices shed from the obstacle sides, connected near the free end. Further down-

stream, the tip structures and horseshoe legs combine near the ground plane with

vorticity generated due to the impingement of the downwash on the base plane to

form large streamwise structures called the trailing vortices (Pattenden et al., 2005).

Figure 2.2: Three-dimensional vortex topology surrounding an obstacle (AR = 1)
at high relative submergence (from Pattenden et al. (2005)).

Another mean flow pattern in the near wake of the low-aspect-ratio circular

cylinder (AR = 2) has been proposed by Frederich et al. (2008) as shown in Fig.2.3

which is in agreemnt with Pattenden et al. (2005)’s model; however, the arch vortex

has been presented differently. Frederich et al. (2008) showed the flow on the

cylinder shell separates close to 80◦, starting to generate a typical alternate vortex

shedding. This vortex street is disturbed massively by the flow over the free end,

and their combination leads to a recirculation arch vortex with tornado-like regions

downstream of the cylinder.

A pair of streamwise vortex structures of opposite sign to the tip and horseshoe
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Figure 2.3: Three-dimensional vortex topology surrounding an obstacle (AR = 2)
at high relative submergence (from Frederich et al. (2008)).

structures may also be found in the wake close to the ground plane, which induce

an upwash on the symmetry plane of the wake (Etzold and Fiedler, 1976; Mason

and Morton, 1987; Sumner et al., 2004; Wang and Zhou, 2009). However, these

structures, often referred to as base vortices (Sumner et al., 2004), are much less

robust than the other wake constituents and are frequently not observed.

2.2.1 Horseshoe Vortices

The dynamics and spatial extent of the horseshoe vortex system upstream of

the obstacle depends on the ground plane boundary layer thickness, the cross-

flow Reynolds number based on the obstacle diameter (or the boundary layer

thickness), and the height and geometry of the obstacle (Baker, 1979, 1980; Seal

et al., 1995; Ballio et al., 1998; Simpson, 2001). The dynamics of the horseshoe vortex

upstream of the body have been studied extensively, and it is well-established that

the horseshoe system may be comprised of several vortices evolving in a repetitive

cycle of horseshoe vortex system formation, amalgamation, and decay (e.g. (Baker,
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1979, 1980)).

Several investigations reported the existence of a bimodal velocity probability

distribution function in the junction region upstream of the body as shown in Fig.

2.4, associated with very large turbulent stresses (Devenport and Simpson, 1987a,b,

1990; Dargahi, 1989; Larousse et al., 1991; Martinuzzi and Tropea, 1993; Olçmen

and Simpson, 1997). Devenport and Simpson (1990) attributed the behavior to

the intermittent entrainment of low-momentum boundary layer structures in the

corner region between the wall and leading edge. Seal et al. (1995) and Paik

et al. (2007) demonstrated that the primary vortex in the horseshoe vortex system

(adjacent to the obstacle) is annihilated through the entrainment and mixing with

opposite-sign vorticity lifted from the bed surface, and then replaced by the vortex

advancing behind it. There has been little quantitative agreement in the literature

about the relationship between flow parameters (e.g. Reynolds number) and the

number of vortices present in the horseshoe system and their behavior, but most of

the studies agree that the unsteadiness in the vortex system in front of the obstacle

is independent of vortex shedding in the wake (Ballio et al., 1998; Wang and Zhou,

2009). However, Fu and Rockwell (2005); Rockwell (2008) showed that for very

shallow flows there is interdependency between the horseshoe vortex oscillations

upstream of the obstacle and vortex shedding in the wake.

The present work primarily focuses on the flow downstream of the obstacle.

In particular, for the low-aspect-ratio obstacles investigated in this study, tip and

base structures have been observed in the mean flow, and a high degree of control

over the presence and strength of these vortices is demonstrated with changes in

obstacle geometry and relative flow depth. In the following paragraphs, research

on the origins, geometric characteristics, and dynamics is reviewed.
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Figure 2.4: Time-mean velocity vectors in the plane of symmetry in front of a Rood
wing at Re = 6700. Histogram of x-component velocity fluctuations at x/T = 0.204,
y/T = 0.0046 inset. Bimodal flow zone for U velocity component enclosed by solid
line (from Devenport and Simpson (1987b)).

2.2.2 Tip Vortices

In the mean flow, the tip vortices emerge from the free end of the obstacle and

induce a downwash in the wake. Significant consideration has been given to the

flow topology over the free end (Kawamura et al., 1984; Roh and Park, 2003; Park

and Lee, 2004; Pattenden et al., 2005; Hain et al., 2008; Krajnović, 2011). Two foci

are generally observed on the free end of flat-tipped finite cylinders, which were

proposed by Roh and Park (2003); Hain et al. (2008) as shown in Fig. 2.5 to be the

origins of the tip vortices; however, several other studies (Kawamura et al., 1984;

Pattenden et al., 2005; Palau-Salvador et al., 2009; Krajnović, 2011) indicated that

these foci are independent of the tip vortices and are rather connected to each other

to form an arch within the recirculation region on top of the cylinder. These studies

suggest that the tip vortex structures emerging from the free end are formed by the

separation of the upwash flow at the sides of the cylinder.

The question has been raised as to whether the tip vortices are then continuous

structures such as in the wakes of steady lifting bodies, or if they are intermittent

(Sumner et al., 2004). Several recent studies have suggested that the tip vortices
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Figure 2.5: Topological flow pattern over the free end surface, the overall vortical
structure over the free end surface is comprised of the tornado-like vortices evolving
from the two spiral nodes and the side tip vortices. The adjacent vortices are
counter-rotating each other. The arrows (A) and (A′) point out the down-wash
flows (from Roh and Park (2003)).

emerging from the free ends of circular cylinders are often not apparent in instanta-

neous realizations of the flow, suggesting that they are not continuous streamwise

structures (Pattenden et al., 2002; Hain et al., 2008; Krajnović, 2011). In fact, Hain

et al. (2008) and Krajnović (2011) have observed instantaneous counter-rotating

vortex pairs spatially coincident with the mean tip vortices near the free end of

the cylinder. Furthermore, several studies of circular and square cylinders have

proposed the streamwise tip vortices to result from the streamwise tilting of other

structures previously thought to be distinct. For example, Tanaka and Murata

(1999) used time-averaged measurements of the mean velocity field to support

their assertion that the tip structures are consistent with the tilting of the tips of

the arch structures in the upstream direction as shown in Fig. 2.6. Wang and Zhou

(2009) used particle image velocimetry and thermal anemometry to deduce that

the instantaneous structures are indeed a result of tilted spanwise vortices which

intermittently switch between asymmetric (Kármán ) and symmetric shedding. On

the other hand, Bourgeois et al. (2011b) used phase-averaged PIV measurements to

show that in the wake of their square prism of aspect ratio 4, only Kármán shedding
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Figure 2.6: Arch vortex in the wake flow around cylinder AR=1.25 to 10 (from
Tanaka and Murata (1999)).

was present, and that the mean tip structures are explained by quasi-streamwise

vortex filaments connecting the Kármán vortices.

2.2.3 Base Vortices

In some cases, usually in the wakes of high-aspect-ratio geometries and where

the boundary layer is not too thin (Etzold and Fiedler, 1976; Wang and Zhou, 2009),

a streamwise vortex pair of opposite sign to the tip vortex pair may be observed

in the mean flow near the ground plane (Mason and Morton, 1987; Sumner et al.,

2004; Wang and Zhou, 2009) as shown in Fig. 2.7. The base vortex is not as robust

a feature of wall-mounted bluff-body wakes as the tip and horseshoe structures,

and the conditions of its existence are not well-understood.

Mason and Morton (1987) performed qualitative visualizations of the flow struc-

ture around low-aspect-ratio obstacles in steady flow at ReD = O(100), and noted

that the wake was dominated by a streamwise vortex pair that may either induce

upwash or downwash in the wake as shown in Fig. 2.8. At such low Reynolds

number, they demonstrated that the upwash flow was generated by the tilting of

vorticity generated in the region of adverse pressure gradient upstream of the ob-

stacle to form a vortex similar, but of opposite sign to the horseshoe vortex. They
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Figure 2.7: Non-dimensional, time-averaged, streamwise vorticity field in the wake
of different aspect ratio cylinders in x/D = 6. a AR = 9. b AR = 7. c AR = 5. d AR =

3: no base vortices in low-aspect-ratio-cylinder. Vorticity contour increment 0.05,
minimum vorticity contour ±0.05, solid lines represent positive (CCW) vorticity,
dashed lines represent negative (CW) vorticity (from Sumner et al. (2004)).

proposed an empirical rule based on their observations: wide obstacles (aspect

ratio ≤ 1 ), which direct more flow over their crest, produce a dominant vortex pair

with a central upwash (i.e. a base vortex), while tall, narrower obstacles (aspect

ratio ≥ 1), in which the flow is preferentially directed around the sides produce a

dominant vortex pair with central downwash (i.e. a tip vortex).

The criteria of Mason and Morton (1987) are the converse of those proposed

for flows of ReD = O(104) and higher over cylindrical bodies, suggesting that these

vortices are generated by a fundamentally different mechanism. In studies where

obstacle aspect ratio was varied and a base vortex was observed, the strength of

the base vortex has been shown to be directly related to aspect ratio and inversely-

related to downstream distance from the obstacle. For example, Wang and Zhou

(2009) found a monotonic decrease in base vortex strength as the aspect ratio of

their square prism was reduced from 7 to 3, and Sumner et al. (2004) made a similar

observation when varying the aspect ratio of a circular cylinder between 9 and 3.
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Figure 2.8: Schematic illustration of the dominant sense of vortex in the wake of
obstacles at ReD = O(100) (from Mason and Morton (1987)).

In the work of Wang and Zhou (2009), the base structure was observed at x/d = 1

and 3 (where x is the streamwise distance measured from the center of the obstacle

and d is the obstacle width), but not at x/d = 5. Likewise, the measurements of

Sumner et al. (2004) revealed no base structure at x/d = 6.

The most frequent explanation cited in the literature for the existence of the base

structures in the wakes of large-aspect-ratio obstacles is that, in the same manner as

the tip vortices, they are projections of deformed spanwise vortices shed from the

sides of the obstacle and are therefore not continuous streamwise structures. Mean

vortex lines assembled by Tanaka and Murata (1999) were shown to be curved

near the ground plane in addition to the free end, thus also accounting for the

observed base structures. In addition, both Etzold and Fiedler (1976) and Wang

and Zhou (2009) modeled the base vortex as the projection of inclined spanwise

vortices near the wall. Sumner et al. (2004) hypothesized that the base vortices

were, in particular, projections of Kármán vortices since they occurred under con-

ditions when velocity spectra suggested the existence of Kármán shedding. Wang
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and Zhou (2009) used PIV in multiple planes to capture instantaneous streamwise

projections of symmetric and anti-symmetric shed vortices from high-aspect-ratio

prismatic obstacles as shown in Fig. 2.9, demonstrating that such structures could,

in fact, account for both the tip and base structures observed in the mean. Alter-

natively, the large eddy simulation (LES) reported by Krajnović (2011) for circular

cylinder of AR = 6 revealed the streamwise base vortices to be joined through a

transverse discrete vortex located in the base region near the wall as shown in Fig.

2.10. As seen in Fig. 2.10(right), the flow in the symmetry plane moves towards

the cylinder near the ground and bends down after the stagnation point, forming

the Nw vortex (base vortex). In the symmetry plane downstream of vortex Nw, a

focus, Fnw, and a saddle point, Snw, are visible in Fig. 2.10 (right), indicating the

closure of the separation region in the near wake.

Figure 2.9: Model of the flow structure around a wall-mounted finite-length square
cylinder: (a) symmetrically arranged two spanwise vortex roll, (b) staggered ar-
ranged spanwise vortex roll (from Wang and Zhou (2009)).
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Figure 2.10: Circular cylinder of AR = 6: Streamlines and velocity vectors in the
lower part of the near wake (left) and near wake visualized with vortex cores and
streamlines and velocity vectors in plane y = 0 (right). The velocity vectors are not
to scale for clarity (from Krajnović (2011)).

2.3 Effects of Obstacle Shape

While most investigations of the flow structure generated by wall-mounted ob-

stacles have focused on circular cylinders and prisms, as suggested by the collec-

tion of literature described above, other geometries have been investigated. These

include hemispheres and spheres (Okamoto, 1980; Savory and Toy, 1986, 1988;

Shamloo et al., 2001; Strom and Papanicolaou, 2007; Tsutsui, 2008; Papanicolaou

et al., 2011; Ozgoren et al., 2012; Papanicolaou et al., 2012a), tapered plates, pyra-

mids and cones (Vosper et al., 1999; Castro et al., 2001; Martinuzzi and AbuOmar,

2003; AbuOmar and Martinuzzi, 2008; Martinuzzi, 2008), and modified cylinders

and prisms (Savory and Toy, 1986, 1988; Leder, 2003; Sousa and Pereira, 2004). A

few studies have also investigated on flow structure around an axisymmetric hill

(Simpson et al., 2002; Byun and Simpson, 2006; Krajnović, 2008). Further insight

into the shedding behavior and wake topologies of tapered structures will be re-
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viewed in Sec. 4.2.5 and the flow structure around the sphere will be discussed in

more details in Sec. 2.4.

A few studies have systematically investigated the effect of changing the shape

of the free end of otherwise cylindrical or prismatic obstacles. While Tanaka and

Murata (1999) did not observe significant changes in the wakes of cylinders of

varying aspect ratio with varying end conditions, significant effects were noted in

other investigations (Leder, 2003; Sousa and Pereira, 2004). Leder (2003) showed

the tip vortices on a hemispherical-end cylinder of aspect ratio 2 to be significantly

weaker than those on a flat-end cylinder. Furthermore, he noted that, compared

to a flat-end cylinder, the reattachment point in the case of a hemispherical-end

cylinder occurred further downstream, leading to a 10% longer separated flow

region. For cylinders of aspect ratio 6, Park and Lee (2004) examined the flow

structure around the free end having flat, radiussed, beveled, and hemispherical

corner shapes. Similarly, they reported qualitative observation of a strong tip vortex

structure for a flat-topped circular cylinder of aspect ratio 6, but not for cylinders

with chamfered, radiussed, or hemispherical ends. They also noted a stronger

downwash and shorter recirculation region in the wake. Measurements of the arch

vortex near the tip showed that the modified ends significantly reduced vortex

circulation. Sousa and Pereira (2004) showed that the addition of a gable roof of

30◦ pitch to a cubic obstacle had a strong impact on the vorticity field as indicated

by the Q-criterion, although they did not specifically address the presence of tip

structures.

For obstacles of aspect ratio of O(1), wake structures can be quite varied. Savory

and Toy (1986) examined a wall-mounted hemisphere of diameter, D = 190 mm

and the ReD = 1.4 × 105 in turbulent boundary layers of thickness δ/H = 0.9 to

3.9 where H is the obstacle height. Low-Reynolds-number flow visualizations

(ReD = 1.6 × 103) revealed a series of vortex loops shed from the hemisphere that
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tilted downstream such that their streamwise legs induced an upwash in the wake

(i.e. base vortices) as shown in Fig.2.11. Similarly, Becker et al. (2002) observed

slight tilting of the mean arch structure in the wake of broad prismatic obstacles.

Figure 2.11: Distribution of vorticity in the flow regime associated with a hemi-
sphere: 1 horseshoe vorticity, 2 stagnation point, 3 generation of vorticity, 4 sepa-
ration line, 5 dividing streamline, 6 shear layer vorticity, 7 vortex loops, 8 trailing
vortices, 9 boundary layer vorticity, S = separation, R = reattachment (from Savory
and Toy (1986)).

Byun and Simpson (2006) employed fine-spatial-resolution three velocity com-

ponent LDV measurements over the leeside of an axisymmetric hill with base

radius= 2H in turbulent boundary layers of thickness δ/H = 0.5 and showed one

saddle and two foci mean separation points on the hill surface as shown in Fig. 2.13.

The streamwise flow from the upstream and the backflow from the downstream

spiral and converge toward x/H = 1.2 and z/H = 0.7. The flow at this point forms

a focus separation. LDV measurements conducted at one transverse plane in the

wake in x/H = 3.26 as shown in Fig. 2.12. The 3-D mean streamtraces by Byun and

Simpson (2006) showed that the mean streamwise vortex generated by the focus

separation on each side (upwash) is an opposite sense to what is observed (down-
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wash) in the wake plane (x/H = 3.26). It means that the upwash flow observed

is only inside the recirculation zone. Krajnović (2008) conducted LES simulation

based on Byun and Simpson (2006)’s experimental study showing streaklines on

the lee surface of a three-dimensional hill, consistent with upwash in the near wake.

As time-averaging of the flow in Fig. 2.14 demonstrates, an arch vortex attached

with its legs onto the leeward side of the hill. His results was in agreement with

Byun and Simpson (2006)’s experimental study; however, the separation bubble

was much ticker than that found in the experiment.

Figure 2.12: LDV measurements at one transverse plane in the wake of bump (from
Byun and Simpson (2006)).

Martinuzzi and AbuOmar (2003) studied the mean flow in the wake of pyramids

in thin boundary layers. They showed for a broad pyramids of ζ = 90◦ (TR = 1) a

vortex core exists in the plane of symmetry directly downstream of the apex (tip)

as shown in Fig. 2.15. This structure is referred to as a rotor vortex to emphasize

its stability.

Surface visualization and instantaneous pressure measurements revealed a pair

of bifurcation lines originating at the intersection of the leading edge corners of the
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Figure 2.13: Flow structures on leeside of bump,behind the hill: large eddies shown
in black; near surface flow patterns in dashed; mean backflow zone in gray (from
Byun and Simpson (2006)).

Figure 2.14: Streak lines on the surface of the hill, streamlines projected onto plane
z = 0 (where z is the transverse axis) and vortex cores showing the extension of
the vortices. View is from behind the hill on the surface of the hill (from Krajnović
(2008)).

pyramid with the base plane as shown in Fig. 2.16, and extending upward and

downstream along each side of the pyramid. These bifurcation lines were formed

by three alternating-sign mean vortices along the surface. Further PIV studies by

Martinuzzi (2008) and AbuOmar and Martinuzzi (2008) showed that these vortex
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Figure 2.15: Mean velocity field, obtained with LDV, in the plane of symmetry
(z/h =0) for ζ = 90◦ and Re = 3.3 × 104 (from Martinuzzi and AbuOmar (2003)).

structures, which were oriented primarily streamwise in the wake, formed pairs

inducing upwash and downwash downstream of the obstacle. Broad pyramids

(ζ = 80◦ and 90◦) were found to have a simpler flow field consisting of only a

single arch (or hairpin) vortex structure which induced an upwash in the wake

(Martinuzzi and AbuOmar, 2003) as shown in Fig. 2.17.

Figure 2.16: Surface-flow patterns on the side faces for a pyramid ζ = 60◦ (AR =

1.73) obtained using an oil-film technique. Arrows indicate general direction of
pigment movement observed during experiments (from Martinuzzi (2008)).
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Figure 2.17: Vortex skeleton sketch for the flow around low-aspect-ratio pyramids
(from Martinuzzi (2008)).

Hence, whereas high-aspect-ratio cylinders have been shown to produce base

vortices under certain conditions and moderate-aspect-ratio cylinders generally do

not, a new trend appears to emerge in the behavior of streamwise vorticity when

the aspect ratio is near one (which we will refer to as low-aspect-ratio). The above

discussion demonstrates that the wake structure and dynamics of these low-aspect-

ratio obstacles can be highly varied as are the geometries that produce them. The

so-called base vortices – we will use this term to describe any streamwise vortex

pair inducing upwash in the wake – are apparently generated by very disparate

mechanisms for different geometries.

2.4 Flow Characteristics around a Wall-Mounted
Spherical Obstacle

As explained in Sec. 1.1, sediment transport around the sphere, representative of

a boulder in a steep mountain stream, has been studied extensively by Papanicolaou

and co-workers (Strom and Papanicolaou, 2007; Papanicolaou et al., 2011, 2012a).

While the geometry of the sphere is simple, the flow structure around it is extremely
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complex and has been one of the principal challenges for Computational Fluid

Dynamics (CFD) (Constantinescu and Squires, 2004). The few experimental studies

that have considered the flow structures around the sphere in boundary layer flows

have only scratched the surface. None of these studies have proposed a model for

flow around the sphere resulting from the interactions of wake components.

In Ch.5, the wake structure of a fully-submerged spherical obstacle, similar to

the geometry in which the sediment observations were made by Papanicolaou et al.

(2012a), will be investigated to provide insight into the flow-obstacle interaction

with ramification to sediment transport and bed shear stress distrubution. As will

be shown in Ch. 5, for a sphere, not only the dominant flow structures have been

investigated but also the bed shear stress distribution has been quantified. Thus,

the spherical geometry is being treated in this chapter separately.

Only a few studies have been considered and spherical bodies on boundary

layer flow (Okamoto, 1980; Tsutsui, 2008; Ozgoren et al., 2012). The flow structure

around sphere in the unbounded flow conditions has been studied extensively,

either experimentally or numerically. Experimental investigation have been con-

ducted via variety of approaches including flow visualization (Kim and Durbin,

1988; Sakamoto and Haniu, 1990) and thermal anemometry in the wake (Achen-

bach, 1974). Numerical investigation of flow field properties have been obtained

by Achenbach (1972); Taneda (1978); Mittal and Najjar (1999); Constantinescu and

Squires (2003, 2004); Jang and Lee (2008). Different flow regimes via varying ReD

and shedding mechanism around the sphere have been the primary interest in

these investigations.

Okamoto (1980) conducted an experimental investigation on the flow past a

sphere (D = 40 mm) and same aspect ratio hemisphere-cylinder (circular cylinder

with hemisphere on top) placed on a ground plane with δ/D= 0.1 in the wind

tunnel at the ReD = 4.74 × 104. Velocity measurements were conducted in x/D =0
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to 28 via yawmeter and a wake model was proposed as illustrated in Fig. 2.18.

To the authors knowledge, that is an only wake model proposed in the literature

for the wake of wall-mounted spherical geometry. The vortex skeleton model is

consistent with models of flow structure in the wake of low-aspect-ratio obstacles

as obtained by Pattenden et al. (2005) containing arch and horseshoe vortices.

Figure 2.18: Proposed model for a wall-mounted sphere (Okamoto, 1980)

Pressure measurement by Okamoto (1980) demonstrated that the separation

line on the ground upstream of the body was closer to the obstacle for sphere

compare to cylinder. The intersections of the arch vortices with the ground plane

were identified by the pressure distribution. The arch vortices were gradually

inclined by the effect of strong downwash such that the inclined arches induced an

upwash in the wake. An upwash was also reported in the near wake of a three-

dimensional hill and wall-mounted hemisphere (Savory and Toy, 1986; Krajnović,

2008).

The horseshoe vortex was observed at x/D = 2 and 4 by Okamoto (1980) via

using the tuft-grid method as illustrated in Fig. 2.19. It was observed that the
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horseshoe vortex becomes flat at x/D = 4 and disappears at about x/D = 5. While

Pattenden et al. (2005) reported the existence of trailing vortices at x/D = 2.5

for circular cylinder of AR = 1, resulting from the combination of tip structures

and horseshoe legs near the ground plane, this observation was not reported by

Okamoto (1980) in the wake of sphere.

Figure 2.19: Horseshoe vortex behind the sphere observed by the tuft-grid method
(Okamoto, 1980)

Tsutsui (2008) investigated the flow around a sphere (D = 57 mm) which was

positioned in wind tunnel with varying gap above the boundary in ReD = 8.3 ×

104. Three thick turbulent boundary layers of thickness δ/D =0.46, 1.26, and

2.11 were investigated. The flow was visualized by smoke-wire method and the

surface oil-flow method and the surface pressure on the sphere and the plane
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were measured. Figure2.20 is a photograph showing the flow visualization of the

sphere. Tsutsui (2008) noted that the horseshoe and arch vortices exist when sphere

was mounted on the plane. Arch vortices were formed downstream of the sphere

and the separated shear layer from the top surface of the sphere reattaches at rear

surface of the sphere.

(a)

(b)

Figure 2.20: Flow visualization of the wall-mounted sphere (δ/D = 0.46) using
smoke-wire method: (a) ReD = 8.3 × 104 , (b) ReD = 1 × 104 (Tsutsui, 2008).

The oil-flow pattern showing the surface flow over the sphere and the plane,

the flow sketches and the fluctuating pressure coefficients along the centerline of

the plane is shown in Fig. 2.21. He noted that a saddle point is existed at x/d = 0.8

on the plane and a peak in the Cp′ (= ∆p/0.5ρU2 where ∆p is the r.m.s. value of

the fluctuating pressure) distribution is observed at x/d = 0.4 (Cp′ distribution has

peaks at separation and attachment points). He deduced that these observations

indicate the existence of a horseshoe vortex.
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Figure 2.21: Surface oil-flow patterns of the wall-mounted sphere (δ/D = 0.46,
ReD = 8.3 × 104 (Tsutsui, 2008)

The pressure coefficient distributions on the center line of the sphere and on the

plane is shown in Fig. 2.22. The inside and outside of the sphere indicate positive

and negative pressures, respectively. In addition, the upper and lower area from

the ground line (Cp = 0 line) indicate negative and positive pressures, respectively.

For a wall-mounted sphere case, the upper and lower Cp distribution of the sphere

is asymmetric. The pressure acting on the forward-lower region of the sphere is

positive, and that acting on the upper-rear area is negative.

Similar investigation on a sphere with varying gap on a flat plate was also

conducted using PIV and dye visualization by Ozgoren et al. (2012) at ReD = 5000

and thick boundary layer of δ/D = 1.58 to determine the flow-structure interaction

with the plate boundary. Their results enhanced understanding of flow pattern in

the streamwised symmetry plane which will be compared to results of this study in
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Figure 2.22: Pressure distribution of the wall-mounted sphere and the plane (δ/D =

0.46, ReD = 8.3 × 104 (Tsutsui, 2008)

the Sec.5.1. Figure 2.23 shows flow visualization image of instantaneous flow field

with laser illumination of Rhodamine dye injection technique around the smooth

sphere (the small scale vortices are designated by A to D). As Fig. 2.23 shows, small

scale vortices in the wake region are formed around larger vortices with a wavy

appearance due to Kelvin Helmholtz instability in the boundary layer.

Figure 2.23: Flow visualization of flow structure with laser illumination of Rho-
damine dye injection technique around the smooth sphere at ReD = 5000 (Ozgoren
et al., 2012)
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The experimental study of Taneda (1978) by means of smoke-wire and the

surface oil-flow method revealed a vortex skeleton model for a sphere supported

by steel rod at the rear in the super critical regime (3.8 × 105 < Re < 106). Taneda

(1978) noted the vortex sheet separating from the sphere rolls up into a Ω-shaped

structure to form a pair of strong streamwise vortices as shown in Fig. 2.24. He

noted that in this flow regime, the wake is not axisymmetric.

Figure 2.24: Proposed model for sphere supported by rod in the rear (Taneda, 1978)

Turbulent characteristics and mean flow around hemispherical and spherical

geometries on the rough bed at open channel flow has also been investigated with

implications to sediment transport (Shamloo et al., 2001; Strom and Papanicolaou,

2007; Dey et al., 2011; Papanicolaou et al., 2011, 2012a). The last two studies also

documented flow field around sphere geometries within an array (Fig. 2.25) to
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define mean flow and turbulent statistics in which the observations bring greater

similarity to bed load transport studies.

Figure 2.25: Perspective view of the experimental boulder section (top), and Plan
view sketch of the ADV measurement locations (bottom). (Papanicolaou et al.,
2012a)

Dey et al. (2011) considered the time-averaged characteristics of turbulent wall-

wake flows downstream of a sphere placed on a rough wall. Vertical profiles of
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u/u∗ and τ/u∗2 at different streamwise locations of sphere of D = 40 mm were

measured as shown in Fig. 2.26. The u profiles in wall-wake flows exhibit a

reversal velocity characteristic in the near-wake flow and a gradual recovery of the

undisturbed boundary layer with an increase in x. It is visible from the τ/u∗2 profile

that immediately downstream of the sphere, τ starts with a positive value near the

wall and sharply increases with z forming a peak at z/D =0.6.

Figure 2.26: Vertical profiles of u/u∗ (left) and τ/u∗2 (right) at different streamwise
locations of sphere of D = 40 mm (Dey et al., 2011).

Papanicolaou et al. (2012a) using the ADV measured the streamwise turbu-

lence intensities, rms(u′), normalized with u∗, for symmetry, 0Dy, and −1Dy planes

around a boulder compared with LES as illustrated in Fig. 2.27. The maximum in

the profile observed at the crest of the boulder (sphere) in which the shear layer

forms. The rms(u)/u∗ decreased near the bed which was related to increased rough-

ness there. While the rms(u)/u∗ presents the maximum at z/H = 0.26 (where H=

flow depth) in 0Dy, it increased to z/H = 0.3 in transect 1Dy where the profiles
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collapsed better and have lower magnitude than 0Dy.

(a)

(b)

Figure 2.27: Comparison between the measured and simulated streamwise turbu-
lent intensity profiles normalized with u∗ from the boundary characteristics method
for: (a) transect 0Dy (flume centerline), and (b) for transect 1Dy (from (Papanico-
laou et al., 2012a).

Papanicolaou et al. (2012a) also employed LES for a sphere in an open channel



www.manaraa.com

35

to resolve eddy structures around the boulder. However, the LES model considered

a smooth, impermeable bed and therefore was not identical to the experiment. As

illustrated in Fig. 2.28, the vortices are shed from top of the sphere into near wake

region. In streamwise, the vortices sheared toward the base plane in the wake of

sphere.

Figure 2.28: Magnitude of the instantaneous vorticity vector (a) in a longitudinal
plane, and (b) in a horizontal plane at half boulder height (Papanicolaou et al.,
2012a).

The contours of the time-averaged streamwise vorticity at 6Dx, and 7Dx are

shown in Fig. 2.29. Streamwise features observed in the mean wake include

counter-rotating distributions of vorticity inducing downwash. The streamwise
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vorticity distribution in the wake of the sphere at x/dc = 6 is similar to that ob-

served by Pattenden et al. (2005) in the wake of a low-aspect-ratio cylinder and is

dominated by the tip and horseshoe structures. At x/dc = 7 the tip vortices are

significantly sheared toward the base plane in the wake of the sphere.

(a)

(b)

Figure 2.29: Contours of the time-averaged streamwise vorticity together with
vectors of the secondary flow around a boulder (sphere) with LES at locations: (a)
6Dx(x/dc = 6), and (b) 7Dx(x/dc = 7) where dc is boulder (clast) diameter (from
(Papanicolaou et al., 2012a).
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2.5 Effects of Boundary Layer Thickness

The influence of boundary layer thickness on the structure of the wake has

been documented in several studies (Sakamoto and Arie, 1983; Martinuzzi and

AbuOmar, 2003; Wang et al., 2006; Bourgeois et al., 2011a). This is typically reported

as the ratio δ/D for large-aspect-ratio obstacles (where δ is the boundary layer

thickness and D is the width of the obstacle). For circular and square cylinders

of aspect ratio significantly greater than one, increasing boundary layer thickness

usually provides more favorable conditions for the existence of upwash. Wang et al.

(2006) addressed the effect of δ/D (δ/D=0.51, 1.02 and 1.90) in a parametric study

using particle image velocimetry in the symmetry plane of the wake of a square

cylinder of AR = 5. They found the intensity of the upwash near the junction of

the cylinder to increase with increasing δ/D as illustrated in Fig. 2.30.

Recently, Bourgeois et al. (2011a) proposed that the existence of upwash in the

wake is determined by a threshold in δ/D which separates two fundamentally

different wake structure types. For a square cylinder of AR = 8, with δ/D = 0.7,

only downwash was observed, and the wake dynamics were explained in terms

of the half-loop structure introduced by Bourgeois et al. (2011b) as shown in Fig.

2.31. For δ/D = 2.6, a full-loop structure, similar to the model proposed by Wang

and Zhou (2009) was shown, resulting in both upwash and downwash in the wake.

However, as suggested in Sec. 2.2.3, δ/D is not the sole parameter governing the

selection, as Sumner et al. (2004) demonstrated the influence of obstacle height.

As stated in Sec. 2.2.3, a notable exception is the wake topology proposed by

Krajnović (2011) in which upwash is observed for a circular cylinder of AR = 6

with δ/D = 0.07.

On the other hand, the influence of δ/D is less clear for low-aspect-ratio ob-

stacles, which tend to have even more complex, three-dimensional wakes due to

the proximity of the various elements of the wake. Using surface visualization ex-
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Figure 2.30: Averaged sectional streamlines (left) in the x-z plane at y∗ = 0, viewed
on a reference frame fixed on the wall, and the corresponding contours of lateral
vorticity ω∗y. (right), contour increment=0.2. (a), (b) δ/D=0.51, (c), (d) δ/D=1.02,
(e), (f) δ/D=1.9. The thick solid line indicates the reverse flow region (from Wang
et al. (2006)).

periments around low-aspect-ratio obstacles in thick boundary layers (δ/H = 2.5),

Chyu and Natarajan (1996) inferred the existence of an arch vortex in a pyramid

wake that was inclined upstream such as to induce a downwash in that region.

In contrast, Martinuzzi and AbuOmar (2003) reported the single arch structure,

as described above, in a thick boundary layer (δ/H = 2), tilted downstream from

the leading edge corners, such as to induce an upwash. The latter observation is

consistent with that of the high-aspect-ratio obstacles mentioned above, as well as
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Figure 2.31: Effect of boundary layer thickness on flow topology (from Bourgeois
(2012)).

that of Savory and Toy (1986) who presented data illustrating an increase in base

vortex strength in transverse planes downstream of their hemispherical obstacle

with increasing boundary layer thickness. In the low-Reynolds-number studies of

Mason and Morton (1987), blunt plates with AR < 1 were found to produce upwash

in boundary layers of thickness comparable to obstacle height. Interestingly, for

AR = 0.25, the upwash was stronger for the thinner boundary layer, but this trend

reversed for AR ≥ 1.

To the authors’ knowledge, there are no studies that report base vortices or

upwash in the wakes of circular cylinders of AR ≈ 1. The present study will
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discuss data where this is the case.

2.6 Effect of Relative Submergence

The effect of relative submergence has been considered in hydraulic studies

due to interest in fish habitat structures, flow structures around clasts, and sedi-

ment transport (Shamloo et al., 2001; Papanicolaou and Kramer, 2005; Tritico and

Hotchkiss, 2005; Strom et al., 2007; Papanicolaou et al., 2011; Lacey and Rennie,

2012) and the study of Lacey and Rennie (2012) was undertaken to provide fur-

ther insight into flow depth/wake structure relationships of a submerged surface

mounted cube. In fact, most of the studies conducted on the topic of relative sub-

mergence have been in the context of open channel flow. Despite the considerable

number of studies of flow around bridge-pier-like objects (Sadeque et al., 2008),

we still have a limited knowledge of flow around submerged bluff bodies in open

channels.

One study by Ozturk et al. (2008) was considered the boundary layer flow for

cylinder of AR =0.4 in a RS = 1. Their study investigates the flow past a confined

circular cylinder in a narrow rectangular duct with a Reynolds number , Red, in

the range of 1500 to 6150 by using the PIV technique. For explaining downstream

and upstream juncture regions of the cylinder and the dynamics of the horseshoe

vortex system both time-averaged and instantaneous flow data were investigated.

Ozturk et al. (2008) noted that there are concentrated vortices in the downstream

corners of the cylinder at d/H = 1 and the size, intensity and interaction of the

vortex systems vary substantially with the Reynolds number as shown in Fig. 2.32.

The figure shows two symmetric primary vortices, Vp, and a pair of corner vortices,

Vco, at the upper and lower junction regions. A pair of counter-rotating vortices,

Vc, located between the primary, Vp, and developing, Vd, vortices, are also exist

upstream of the cylinder for lower Reynolds number 1500.

Shamloo et al. (2001) examined the mean flow around hemispherical fish habi-
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Figure 2.32: Side view of time-averaged normalized vorticity contours upstream
and downstream of the cylinder in RS = 1. The positive and negative contours are
displayed with solid and dashed lines (Ozturk et al., 2008).

tat structures in shallow open channel flows and proposed a classification of flow

regimes based on d/h, where d is the flow depth and H is the characteristic ob-

stacle length scale (e.g. the obstacle height) as shown in Fig. 2.33. For d/h > 4,

the presence of the obstacle left no discernible signature on the free surface and

flow patterns were qualitatively consistent with those observed around obstacles

immersed in boundary layer flows. For 1.3 < d/h < 4 surface wave appeared as

illustrated in Fig. 2.33(c). When the relative depth of flow was in the range of

1.1 to 1.3 mixing of free shear layer through the whole depth was observed (Fig.

2.33d). For d/h < 1, standing waves formed around the obstacle, and a Kármán
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vortex street was reported in the wake. A similar phenomenon occurs in stratified

atmospheric flows around islands (Smith and Grubišić, 1993). Furthermore, Sham-

loo et al. (2001) measured shear stress distributions and scour patterns on those

regimes. The results of their study, however, were difficult to generalize because

the depth and discharge for different flow regimes in the study varied.

Figure 2.33: Details of flow for regimes 2, 3 and 4 (c, d, e) in Shamloos experiments
(from Shamloo et al. (2001)).

Sadeque et al. (2008, 2009) further studied the effect of relative submergence

on flow around cylindrical objects of aspect ratios between 0.48 and 2.6 in smooth

and rough bed open channels and found that increasing relative submergence

suppressed alternate vortex shedding and producing a more three-dimensional

flow. In the case of slightly submerged and non submerged cylinders, wake vortices

were found to shed in alternate style with a Strouhal number St = 0.2. The width

of the wake, however, was smaller for the non submerged cylinder such that the

dimensional shedding frequency was higher.

In addition, Papanicolaou and Kramer (2005) observed distinct patterns of sed-

iment deposition around spherical obstacles for relative submergences of 0.8 and

3.5 as shown in Fig. 2.34, suggesting a significant change in flow structure. In the
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high relative submergence experiment, the majority of clusters are deposited in the

wake of the clasts. However, in the low relative submergence experiment, clusters

are deposited in the stoss of the clasts and clasts appeared to control the areas

where cluster formation occurred. Papanicolaou et al. (2011) also demonstrates

more details for low relative submergence case and noted the existence of Kármán

vortex street in the wake region of the clast using LSPIV.

(a)

(b)

Figure 2.34: Plan view of the tests section for the: (a) d/dclast= 3.5, (b) d/dclast= 0.8,
(from Papanicolaou and Kramer (2005)).

Sadeque et al. (2008) studied the effect of relative submergence with experimen-
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tal study of flow around cylindrical objects in a smooth bed open channel. Cylin-

drical objects of equal diameter and four heights were tested while flow depth was

kept the same producing four different levels of submergence. Horseshoe vortex

systems were found to appear closer to the submerged cylinders compared to a

surface piercing cylinder. The increase in dimensionless bed-shear stress is found

to be inversely related to the level of submergence of the cylinders. Increasing

submergence of the cylinder was found to suppress alternate vortex shedding and

produce stronger three-dimensional flows in the downstream wake. They revealed

that the upstream boundary layer separation point moves closer to the object as

the cylinders become more deeply submerged. This results in a reduction of the

size of the horseshoe vortex system. In the case of slightly submerged and non

submerged cylinders, wake vortices were found to shed in alternate style with a

Strouhal number St = 0.20. The width of the wake, however, was smaller for the

non submerged cylinder such that the dimensional shedding frequency was higher.

Sadeque et al. (2009) also carried out the same tests on a rough bed in open

channel flow. The vorticity structures on smooth and rough beds are similar, but

the vortex strength is found to be 20 to 30% larger on the rough bed. Since the

obstacles have changed during the tests, it is difficult to make a trend from Sadeque

et al. (2008, 2009) experiments and the effect of relative depth on wake structure is

not clear.

Lacey and Rennie (2012) observed further insight into flow depth/wake struc-

ture relationships of a submerged surface mounted prism of 0.2m width× 0.2m

length×0.1m height (d/H=3, 2.5, 2) using ADV on a flat bed (thin layer of coarse

sand, D50=1 mm) open channel flume. According to the results of their study,

with decreasing relative depth, substantial variations in the spatial distributions

of mean and turbulence statistics were observed in the wake of submerged wall-

mounted cube which have important implications for local sediment mobility and
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fish habitat. The spatial distribution of turbulent kinetic energy, ke, values shift

downstream with decreasing depth as shown in Fig. 2.35a whereas increasing up

to 50% of principal Reynolds shear stress (−u′w′) close to the top of the cube was

observed as illustrated in Fig. 2.35b. This has been related to the compression of

shedding vortical structures. High wake values of ke are in agreement with the

results of previous studies (e.g, Tritico and Hotchkiss (2005)) and has been related

to the existence of shear layers overtop and along the sides of the obstacle. While

Sadeque et al. (2009) observed near-bed ke values to decrease with relative depth,

this trend was not observed in the Lacey and Rennie (2012)’s data. Lacey and Ren-

nie (2012) also examined the spatial distribution of time-averaged vertical vorticity,

ωz. Results of their experiments demonstrated that the zones of intense vorticity

expand downstream with decreasing flow depth. With interpretation of near-bed

(z+ = 0.3) variation in spatial pattern of−u′w′, they noted that with decreasing flow

depth, the flux of uw momentum changes location from the centerline toward the

sides which results in bed shear stress reduction directly behind the cube.

2.7 Shedding Characteristics

In this section, the shedding characteristics and wake dynamics of wall-mounted

bluff bodies (especially low-aspect-ratio) will be reviewed which depend on a

number of factors including obstacle shape, aspect ratio, ratio of boundary layer

thickness to obstacle width, and Reynolds number.

The wakes are often less organized and more highly three-dimensional for

cylinders of aspect ratio AR ≈ 1 in which a peak in the power spectrum has not

been reported consistently. For a circular cylinder of AR = 1 at ReD = 4.7 × 104

and δ/D = δ/H = 0.057 (where δ is the boundary layer thickness, and D and H are

the cylinder diameter and height, respectively), Okamoto and Sunabashiri (1992)

reported a broad spectral peak around St = 0.23 suggesting that the shedding was

not strongly coherent. At similar Reynolds number, Okamoto and Uemura (1991)
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reported St = 0.225 in a slightly thicker boundary layer (δ/D = δ/H = 0.086). On

the other hand, no dominant frequency was observed by Uematsu et al. (1990) for

a circular cylinder of AR=1 at ReD = 4 × 104 where δ/D = δ/H = 0.88. Pattenden

et al. (2005) reported only a very weak peak in the energy spectrum of the surface

pressure signal at St = 0.090 for a circular cylinder of AR = 1 at δ/D = 0.1 and

a Reynolds number close to the critical condition. The power spectral density

function was plotted on a linear axis as shown in Fig. 2.36. Similarly, no periodic

shedding was detected by Sattari et al. (2010) for a circular cylinder of aspect ratio

0.5 in ReD = 6 × 103 − 105 and δ/D = 0.08 (δ/H = 0.16).

Obstacle cross-sectional shape also plays a significant role in vortex shedding.

Okamoto and Uemura (1991) rounded the side corners of a cube placed on a

ground plane and found that the shedding Strouhal number increases linearly

with the corner radius. Whereas St = 0.112 was measured for a cube, a circular

cylinder of AR = 1 was observed to shed at twice that frequency. A spectral peak

at St = 0.152 was observed for the same aspect ratio hemispherical-end cylinder

(Okajima, 1982), demonstrating that the shedding frequency is dependent on not

only the cross-section but also the end condition. For a square cylinder of aspect

ratio 0.5 at δ/H = 0.16 (δ/D = 0.08) and ReD = 6×103−105, Sattari et al. (2010) found

a broad spectral peak centered around St = 0.33. The cross-correlation function

revealed that the mean phase difference in fluctuation velocity signals on opposite

sides of the wake is close to 180◦, indicating antisymmetric shedding. Loss of

power near the free end and in the wall junction region was observed. The latter

was attributed to interference with the horseshoe vortex.

More complex shedding behaviors may be observed in the wakes of non-

cylindrical obstacles. For example, cellular shedding has been observed in cones

(Papangelou, 1992; Vosper et al., 1999; Vosper, 2000; Castro et al., 2001), tapered

plates (Castro and Rogers, 2002; Castro and Watson, 2004), and pyramids (Mart-
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inuzzi and AbuOmar, 2003; AbuOmar and Martinuzzi, 2008; Martinuzzi, 2008) in

which either the shedding frequency or Strouhal number was found to be constant

within each cell. The location and size of the cells are functions of the degree of

taper, the aspect ratio, and the end conditions.

Papangelou (1992) found that the nature of cellular shedding by tapered cylin-

ders and cones depends on Reynolds number and apex angle, ζ. Constant fre-

quency cells were observed for tapered cylinders with 0.048◦ ≤ ζ ≤ 0.3◦ at Re =

O(100), which broke down for increasing or decreasing Reynolds number (Re < 80

or Re > 150), and it was proposed that the existence of cellular shedding was

sensitive to end conditions. Vosper et al. (1999) examined cones of significantly

larger apex angle (22◦ < ζ < 68◦) at Re = O(104) and found a single cell of constant

frequency along the height in stably-stratified flow. On the other hand, Castro

et al. (2001) observed periodic wake structures created by cones of aspect ratio less

than one in strongly stratified flows in a towing tank. A cross-correlation anal-

ysis of point velocities measured in the wake indicated that the structures tilted

upstream in this case, consistent with downwash. In the same study, experiments

(in non-stratified flow) on wall-mounted triangular plates of aspect ratio 10 and

30 revealed cellular shedding patterns such that a significant portion of the lower

wake exhibited constant-frequency shedding. Closer to the tip, either constant

Strouhal number shedding was observed, or two frequencies, consistent with a

bistable shedding regime.

Castro and Watson (2004) observed Kármán shedding of constant frequency

corresponding to St = 0.146 across the entire span of bluff triangular plates of mild

taper ratio, 1.2 < TR < 8. The taper ratio TR is defined as (plate length / average

width). For plates with a free end, this is equivalent to the aspect ratio, which

we will denote ARav to distinguish it from the aspect ratio defined in this thesis.

Similar to cones, the mildly-tapered triangular plates (Castro and Watson, 2004;
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Castro and Rogers, 2002) exhibited a constant-frequency cell in the base region as

illustrated in Fig.2.37. The height of this cell was found to vary between 4 to 7 times

the base width. However at small taper ratios (i.e. TR = 3.73) as shown in Fig.

2.37, the main vortex shedding peaks are visible all along the span. At TR = 7.5

the high-frequency, broad peaks can also be seen for z/L > 0.25.

While no vortex shedding was observed for TR = 0.36, weak Kármán-like

shedding at St = 0.18 was observed for TR = 0.58 and 1, in relatively thick boundary

layers (δ/H = 1.1 and 0.68, respectively) despite the extreme taper and the spatial

extent of the approaching shear flow. Notably, no coherent shedding was observed

for a plate of TR = 0.58 with the size doubled, emphasizing the importance of

boundary layer thickness, though still not well-understood.

Further insight into the shedding behavior and wake topologies of tapered

structures was introduced by Martinuzzi and AbuOmar in their investigations of

pyramid-shaped obstacles in thin boundary layers and shedding behavior was

classified based on apex angle ζ.(Martinuzzi and AbuOmar, 2003; AbuOmar and

Martinuzzi, 2008; Martinuzzi, 2008). For pyramids with apex angles, ζ, in the range

15◦ < ζ < 75◦ (equivalent to taper ratios in the range 7.6 ≥ TR ≥ 1.3), Martinuzzi

and AbuOmar (2003) observed a cellular shedding pattern similar to that found

by Vosper et al. (1999) and Castro et al. (2001), and Castro and Watson (2004). As

shown in Fig. 2.16 a pair of bifurcation lines extend upward and downstream

along each side of the pyramid. These bifurcation lines were found to delineate

the cellular shedding regions. Martinuzzi and AbuOmar (2003) found St = 0.33

for a pyramid of aspect ratio 1. Also, no vortex shedding was observed for broad

pyramids of ζ > 90◦ (TR < 1). On the other hand, Okamoto et al. (1977) reported

periodic vortex shedding for ζ < 120◦.

Analysis of the phase shift between fluctuations at different positions in the

wake has been previously employed by Castro et al. (2001), Martinuzzi and AbuO-
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mar (2003), and Wang and Zhou (2009). For conical obstacles, Castro et al. (2001)

reported vertical variations in the phase of vortex shedding with spanwise position,

which are dependent on obstacle shape. They documented that for cones of aspect

ratio less than one in strongly stratified flow, the vortex lines can be significantly

tilted downstream, particularly in the upper part of the wake. Martinuzzi and

AbuOmar (2003) also observed, for an aspect ratio of 1.73, a phase lag in pyramid

wakes between a reference location (pressure signal on the side face of the pyramid)

and the velocity fluctuations in the wake for several heights above the base plane,

also suggesting tilting of wake vortices.

A few experimental studies have considered the shedding characteristic around

the wall-mounted sphere. Most of the vorticity shed into the wake originates from

shear layer separation at the sphere surface. Hot-wire anemometer were employed

by Okamoto (1980) and Strouhal number of St = 0.222 was documented for sphere.

Tsutsui (2008) demonstrated that power spectra have no prominent frequencies,

when the sphere contact with boundary, indicating no organized vortex shedding

from the wall-mounted sphere. This observation was confirmed with varying δ/D

up to 2.11.

2.8 Summary

Compared to the number of studies on the subject of flow around bluff bodies,

relatively few studies have focused on the turbulent wake of low-aspect-ratio bluff

bodies. As a result, comprehensive information about the turbulence characteristics

of the wake is not available in the prior studies.

For the flow structure around different low-aspect-ratio geometries, three dom-

inant mean flow features are qualitatively robust: horseshoe vortex, tip vortex,

and arch vortex. In addition to the three mentioned vortex structures, for higher

aspect ratio obstacles, a pair of base vortex structures may be found close to the

obstacle-wall junction (Etzold and Fiedler, 1976; Tanaka and Murata, 1999; Sumner
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et al., 2004, Adaramola et al. (2006); Wang et al., 2006, 2009). They are distinguished

from the tip and horseshoe structures by the fact that they induce an upwash on

the symmetry plane of the wake.

Near the tip, vortex shedding is usually symmetric, and for sufficiently large

aspect ratio H/D, the shedding mode may transition from the symmetric shedding

(arch) near the tip to antisymmetric Karman shedding near the base. However,

there is not general agreement about the aspect ratio at which the transition first

appears (Wang and Zhou, 2009).

The base vortex is usually observed in relation to high-aspect-ratio geometries

or in boundary layers that are thick of the order of the obstacle height (Sumner

et al. 2004; Wang and Zhou, 2009). Interestingly, the base vortex is absent when

the boundary layer is negligibly thin (Etzold and Fiedler, 1976; Okamoto and

Sunabashiri, 1992; Park and Lee, 2000; Palau-Salvador et al., 2010). The base vortex

induces upwash flow from the ground plane and is opposite in sense of rotation to

the tip vortex (Sumner et al., 2004, Wang et al., 2006).

The role of the base vortex in the three-dimensional vortex structure of the wake

is not well-understood. There is no consistent indication about nature of the base

vortex. Furthermore, there is controversy about even the existence of the base

vortex for a low-aspect-ratio obstacle. Most of the models here suggest that the

base vortices are a projection of spanwise vortices. Sumner et al., (2004) proposed

that vorticity emerging from free end suppresses spanwise vortex shedding at

low-aspect-ratio. Therefore, the study concluded, the base vortices would not be

expected at the lowest aspect ratio where spanwise vortex shedding expected to

be suppressed. However, this is not a satisfying explanation since these vortices

appear in time-averaged data, whereas the flow is unsteady periodic.

Vortex connectivity is another aspect of flow that poses many questions not

resolved by the existing literature. For example, the base vortex connectivity
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with other known vortical structures in the flow is not clear (even in mean-time

averaged-flow). It is not evident whether the base (and tip) vortices are quasista-

tionary, as in the case of a wing tip vortex, or if they are simply averages of many

individual shed structures as in the model of Wang and Zhou (2009). Similarly, the

question of whether the vertical vortices are connected across the tip shear layer

or if they are merely bent back toward the obstacle at the free end are yet to be

assessed conclusively. As a result, there is not a consistent 3-D model of wake

structure (mean) for different geometries discussed.

In addition to the many questions and controversies in flow studies around bluff

bodies, the literature reviewed here does not elucidate many concerns including the

role of variation in geometry and especially the role of relative submergence (d/H)

in the three-dimensional vortex structure of the wake. Besides, little research has

been done on flow structure around bluff body in open channel and hydrodynamic

effects on sediment transport around them. Also, characterization of fluctuations

which govern scalar transport is not well-understood.

Therefore, the flow and sediment studies have not been combined to provide

insight on total measures of bed shear stress that can be used to predict sedi-

ment transport characteristics in more complex riverine environments involving

large obstacles. The time-averaged spatially-resolved bed shear stress distribution

around the obstacles is key parameter for this kind of study. Also the bed shear

stress has not been considered with varying Reynolds number, Froude number,

Shields parameter, and relative submergence.

Finally, several open questions remain about interpretation of mean and instan-

taneous flow structure. Because the flow is aperiodic in time, a comparison of the

mean and instantaneous flow characteristics shows that the flow deviates signifi-

cantly with time such that the concept of a mean flow that consists of tip vortices

and spanwise shedding and reattachment may be of limited physical significance
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(Ballio et al., 1998; Vlachos and Hajj (2002); Pattenden et al., 2005). Therefore, the

difference between the flow at any instant and the mean flow raises important

questions as to the relevance of time averaged modeling methods to this class of

flows.

On the way forward several key parameters will be considered. Table 2.1 lists

several key parameters from selected studies relevant to the present work. For the

constant ReH = 17, 800 will be used in this study, ReD is in the range of 2 to 2.5×104.

This is on the same order of magnitude as most studies presented in Table 2.1 and is

an order of magnitude lower than the studies by Leder (2003) and Pattenden et al.

(2005), which are in the critical Reynolds number range. Relative boundary layer

thickness (δ/H) in this study will be 0.2 which is similar to the relative boundary

layer thicknesses of most of the studies cited in Table 2.1. Also, while relative

submergence varies considerably in some studies, there is considerable overlap

between the values used in this study, and other works. However, similarities in

relative submergence are often found for widely-varying obstacle aspect ratio.

Author(s) AR = H/D δ/D d/H ReD × 104

Tanaka and Murata (1999) 1.25-10 0.1 1.5-12 3.7
Leder (2003) 2 0.008 ? 20
Sumner et al. (2004) 3-9 2.57 2.97-8.8 6
Pattenden et al. (2005) 1 0.1-0.2 3.63 20
Wang and Zhou (2009) 3-7 1.35 3.2-7.5 0.93
Palau-Salvador et al. (2009) 2.5, 5 0.25-0.5 1.96 4.3, 2.2
Krajnovic (2011) 6 0.067 3.33 2
Bourgeois et al. (2011b) 4 0.72 ? 2
Present work 0.67, 0.89 0.2 1-5.5 1.96, 2.63

Table 2.1: Summary of previous experiments have been conducted on the
wake of obstacles.
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(a)

(b)

Figure 2.35: Spatial distributions are presented for experimental runs d/H=3.0, 2.5,
and 2.0, and x− y measurement planes z+ = 0.30, 0.95, and 1.3: (a) Turbulent kinetic
energy, ke, in m2/s2, (b) Principal Reynolds shear stress −u′w′ in N/m2 (from Lacey
and Rennie (2012).
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Figure 2.36: Power spectral density function of pressure measurements for cylinder
of AR = 1 at midspan (z/h = 0.5), U = 20 m/s. The plot shows a peak in the energy
spectrum of the pressure signal at 12 Hz (from Pattenden et al. (2005)).

Figure 2.37: Spectral sequences for TR = 7.5 (top) and 3.73 (bottom). Curves are
ordered vertically as indicated by the z′ = z/L values shown for each. The dashed
line in follows the successive peaks which correspond to lower base frequency
(Castro and Watson, 2004).
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CHAPTER 3
EXPERIMENTAL FACILITY AND TECHNIQUES

In this chapter, the experimental set-up and the instrumentation used for this

study are discussed. A water channel facility and the associated instrumentation–

Digital Particle Image Velocimetry (DPIV), and thermal anemometry– are de-

scribed. Measurements of the flow field and resulting wake structures were ac-

complished in a boundary layer flow for semi-ellipsoidal, cylindrical, and spherical

obstacles. Flow visualization has been conducted at low Reynolds number to pro-

vide a qualitative understanding of the wake structure (Hajimirzaie et al., 2012).

Two sets of experiments were conducted in high and low free stream turbulence.

After completion the preliminary results, the plenum of the water channel was

modified as will be described in Sec. 3.1.2. Most of measurements of this thesis

were made after the overhaul in low free stream turbulence. Digital Particle Image

Velocimetry (DPIV) and thermal anemometry were employed to interrogate the

flow structures, shedding behavior, and turbulent characteristics in and around

the wake.

3.1 Water Channel Facility and Flow Quality

Experiments were conducted in a closed-return, free-surface water channel of

width 0.6 m, depth 0.3 m, and length 10 m. Two sets of experiments were conducted

in high and low free stream turbulence. The free-stream streamwise turbulence

intensity u′/U measured using DPIV where:

u′

U
=

1

u(z)

N
∑

i=1













[u(z) − ui(z)]2

n













1/2

(3.1)

Here n=2500. In both conditions, the time-averaged flow outside of boundary

layer was uniform to within 1%.

The honeycomb and screens were frequently cleared of tracer particles using a
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jet of water, to prevent localized blockages and inhomogeneities in the flow.

An acrylic plate of length 1 m placed on the free surface eliminated surface

waves, and allowed optical access from above the water channel in both high and

low free stream turbulence experiments.

3.1.1 High Free-Stream Turbulence Flow

In the first set, the flow was conditioned with a honeycomb flow straightener,

two stainless steel screens and two-dimensional 3 : 1 contraction. After measure-

ments of mean flow velocity and turbulence intensity profiles at multiple locations

in the test section, it was determined that measurements would be conducted ap-

proximately 5 m from the inlet due to favorable flow uniformity and comparatively

low streamwise turbulence intensity of 7% as shown in Figs. 3.1 and 3.2.

Figure 3.1: Mean velocity profile of boundary layer at high free stream turbulence
flow on the plate at the location of the obstacle.z measured from the plate.

The integral length scale of the streamwise fluctuations in the free stream was

measured from DPIV velocity measurements as demonstrated in ONeill et al.

(2004). Integral length is determined from the autocorrelation function using the
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Figure 3.2: rms velocity profiles in the absence of the obstacle. z measured from
the flume bed.

available spatial domain. The integral length scale of the velocity defined by:

L =

∞
∫

0

Rii(r, t)dr (3.2)

where the double-i subscript in Rii(r, t) indicates the autocorrelation function

(i.e. correlation of a velocity component with itself) defined by:

Rii =
ui(xi, t)ui(xi + r, t)

u2
i

(3.3)

and r is the distance between two points in the flow and ui, is the root-mean

square velocity in the i-direction. The integration domain for the determination of

the integral length as a representative length scale of the turbulence can be specified

in a number of ways (ONeill et al., 2004). Here we calculate the integral length

via integration over the entire available domain as shown in Fig. 3.3. The integral

length scale of the streamwise fluctuations was found to be 10.7 mm approximately

0.3 m upstream of the base plate.
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Figure 3.3: Longitudinal velocity auto-correlation function from PIV data

3.1.2 Low Free-Stream Turbulence Flow

After a significant overhaul of the flow conditioning apparatus, a three-dimensional

8 : 1 contraction, honeycomb, and screens were installed as visible in 3.4. Figure

3.5 illustrates the velocity profile obtained by DPIV. The turbulence intensity was

found to be ≤ 0.3% as shown in Fig. 3.6. The results of measured turbulence

intensity was confirmed in thermal anemometry experiments.

3.1.3 Measurement Conditions

The measurement conditions were kept constant in two sets of high and low

free stream turbulence experiments. All the geometrical configurations for experi-

ments were investigated at Reynolds numbers based on the height of the obstacle,

ReH = UH/ν = 17, 800, where U is the freestream velocity. For ellipsoids and cylin-

ders, the flow depth d above the base plate was varied between 50 mm and 275

mm, providing relative submergences d/H between 1 and 5.5 as shown in Fig.3.7.

With decreasing relative submergence, there is a concomitant reduction in flow

velocity due to the slight redirection of flow around the test region. This results
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Figure 3.4: Plan view of head-box of the flume after overhaul.

Figure 3.5: Mean velocity profile of boundary layer at low free stream turbulence
flow on the plate at the location of the obstacle. z measured from the plate.

in a maximum reduction of Reynolds number of 3% and 8% at d/H = 2.5 and 1,

respectively. This velocities were used to calculate Strouhal number in each relative

submergence. For experiments around the sphere a constant relative submergence,

d/H of 3.5 was investigated due to similarity to experiments of Papanicolaou et al.

(2012a).
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Figure 3.6: rms velocity profiles in the absence of the obstacle at low free stream
turbulence. z measured from the flume bed.

Figure 3.7: Schematic of different level of relative submergence.

3.2 Obstacle Geometries and Experimental Setup

Obstacle geometries and experimental setup were kept constant in high and low

free stream turbulence experiments. Five wall-mounted obstacle geometries were

investigated. The first two were formed by a semi-ellipsoidal body having a base

ellipse with major and minor axes of 75 mm and 56 mm, respectively, and a height of
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50 mm, as shown in Fig. 3.8. The obstacle was positioned with its major axis aligned

with the flow (streamwise orientation) and perpendicular to the flow (transverse

orientation). The shape was chosen to be broadly representative of a freshwater

mussel emerging from the sediment on a river bed, but (more importantly for

this study), they can be considered somewhat of a canonical geometry since they

produce a relatively simple flow compared with other geometries. The relative

dimensions of the three axes were determined from measurements of more than 50

mussel shells representing 14 species. The mussels were collected in a quadrat in

Pool 16 of the Mississippi River near Fairport, IA (Nakato et al., 2007) as shown in

Fig.3.9. However, this research focuses on the fundamental effects of shape on flow

structure and not specifically mussel hydrodynamics. Defining the aspect ratio as

the ratio of obstacle height, H, to base width, D, gives H/D = 0.89 and 0.67 for the

streamwise and transverse ellipsoids, respectively. The other two geometries are

circular cylinders of aspect ratios matching the ellipsoids, as illustrated in Fig. 3.11.

The circular cylinders are included as a reference (baseline) since they bear greater

similarity to geometries investigated in other studies. A sphere of diameter, D, 50

mm was employed for comparison with past and ongoing experiments on sediment

transport in open channel flow (Papanicolaou and Kramer, 2005; Papanicolaou

et al., 2012a). It should be noted that this thesis focuses on the flow structure in the

wake and not specifically sediment transport hydrodynamics.

A 12 mm thick base plate of streamwise length 0.60 m and width 0.60 m with

semi-circular leading edge was installed parallel to the bed. The top surface was

offset 0.1 m from the bed. In the subsequent low-turbulence experiments, a sim-

ilar plate with a super-elliptic leading edge was used to avoid the flow separa-

tion (Narasimha and Prasad, 1994). By analyzing the development of a laminar

boundary layer on a two-parameter family of nose shapes, Narasimha and Prasad

(1994)demonstrated that a cubic super-ellipse of axis ratio 6 or higher is a reason-
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Figure 3.8: Coordinate system definition and idealized mussel geometry. The
streamwise configuration is shown.

Figure 3.9: Mussels location map

able optimum shape for avoiding separation on or due to such nose-pieces. A

super-ellipse equation was defined in Eq. (3.4).

[
a − x

a
]n + (

y

b
)n = 1 (3.4)

where a is the length of the nose 0 < x < a and 2b is the plate thickness. As shown

in Fig. 3.12, the minimum axis-ratio for no separation is obtained for n = 3.5. As

fig. 3.12 illustrates, with n = 3.5, the a/2b can be defined from the y-axis, a/2b =
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(a) musselside (b) musselupst (c) musseltop

Figure 3.10: Photographs of a Threeridge (Amblema plicata) mussel shell collected
from Pool 16 of the Upper Mississippi River near Fairport, IA. (a) side view (flow
left to right), (b) upstream-looking view, (c) top view (flow top to bottom).)

Figure 3.11: Streamwise projections of obstacle cross sections.

2.9. The thickness of plate for experiments in this thesis is 12 mm, therefore 2b = 12

mm and a, the length of the nose for these experiments, was defined as a = 35 mm.
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Figure 3.12: The boundary between separated and unseparated flow in the plane
of the two nose shape parameters, axis ratio a/b and exponent n (Narasimha and
Prasad, 1994).

Measurements of the flow in the vicinity of the leading edge verified that the

flow over the leading edge was symmetric with the stagnation point on the center

of the superelliptic edge and no flow separation was observed. The obstacle was

centered 152 mm from the leading edge of the plate in each case. A schematic of the

PIV and thermal anemometry setup, plan view of probe positions, and positions

of Reynolds shear stress measurement around the sphere are shown in Fig. 3.13

through Fig. 3.15.

3.3 Flow Measurement Techniques

3.3.1 Digital Particle Image Velocimetry (DPIV)

Digital Particle Image Velocimetry (DPIV) (Adrian, 2005) is a whole-flow-field

technique providing approximately instantaneous velocity vector measurements in

a planar region of a flow. For seeding the flow, Potters Industries Inc.’s SPHERICEL

Hollow Glass Spheres (mean diameter 10-11 µm) were used with a density of 1.1

g/cc.
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Figure 3.13: Side view of PIV experimental setup.

Figure 3.14: Side view of thermal anemometry experimental setup.

Two-component digital particle image velocimetry was used to characterize

the freestream flow characteristics, the boundary layer on the plate in the absence

of the obstacle, and the highly three-dimensional, unsteady flow surrounding the

obstacle. A LaVision Inc. Flowmaster system was employed, consisting of a

2048 × 2048 pixel CCD camera with 14-bit dynamic range and a frame rate of

approximately 7.2 frames/second, a dual-cavity 200 mJ/pulse Nd:YAG laser with
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Figure 3.15: Plan view of probe positions in thermal anemometry experiments.
Dotted-line shows the access window cut into the upper plate to facilitate position-
ing of hot-film probes.

Figure 3.16: Locations of Reynolds shear stress measurement around the sphere.

light sheet optics, and a PC-based timing and data acquisition system managed

by LaVision DaVis 7.2 and DaVis 8.1 software. The camera was equipped with

Nikon 105-mm Micro-Nikkor lenses. To obtain images in transverse planes, a

front surfaced mirror with dimensions 60 × 85 mm was installed at a 45◦ angle
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downstream of the base plate (approximately 0.5 m downstream of the obstacle

trailing edge) as shown in Fig. 3.13. The transfered images by mirror were such

that positions and consequently velocities in the transverse direction were reversed,

and a correction was applied to the computed velocity field.

Standard cross-correlation analysis was employed in multiple passes on win-

dow sizes of 64 × 64 pixels and 32 × 32 pixels with 50% overlap, to produce

128 × 128 = 16384 vectors. A local median filter was used to eliminate outliers.

DPIV data were acquired by illuminating a plane of the seeded flow twice with

a laser sheet in two orthogonal sets of planes: the symmetry plane (y = 0), side

view images, downstream of the obstacle, and transverse (y − z) planes, upstream

images, at x/H = 1.00, 1.50, 2.00, and 3.00 as shown in Fig. 3.17. The spatial

resolution of the resulting velocity vector fields was approximately 0.625 mm, or

H/80. For experiments around the sphere, DPIV data were also acquired in two

orthogonal sets of planes: the symmetry plane (y = 0) downstream of the sphere,

and transverse (y-z) planes at x/H = 0.5, 1.00, 1.50, 2.00, 3.00, and 4.00. The spatial

resolution of the resulting velocity vector fields was approximately 0.55 mm, or

D/90. In addition to these measurements, the fine transverse (y-z) planes with

the increment of x/D =0.1 is considered in the wake of the sphere from x = 0 to

x = 12.5 mm to shed more lights on the evolution of the structures in the wake.

The obtained DPIV data in upstream view (y − z) and side view (x − z) of sphere

were used to measure the Reynolds shear stress distribution around the sphere as

shown in Fig. 3.15 where the Reynolds shear stress is:

τt,p(x, y, z) = [(−ρu′w′)2 + (−ρv′w′)2]1/2 (3.5)

where u′, v′, and w′ are the velocity fluctuations of the streamwise, transverse, and

vertical components and denotes an average. Figure 3.18 illustrates one example

of defining shear stress locations from intersection of x − z and y − z planes.
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Figure 3.17: Experimental DPIV measurement planes.

Since the DPIV data in the upstream view and the side view of sphere were

obtained separately, the z-axis magnitude, i.e. the spacing between vectors created

in the PIV vector files in the vertical direction (z-direction), in DPIV images of side

and upstream planes were not constant (using a data file exported from LaVision).

Therefore a Matlab code was developed to interpolate the Reynolds stress in a

constant specific locations in both planes. Although the spacing between vectors,

Zg, in the side and upstream planes were close to each other (for instance at y = 0,

one of the planes’ intersection, Zg =0.853699 and in x/D = 1, Zg =0.8571), the spline

quadratic interpolation method was employed to define constant specific locations

(similar z values) for the Reynolds shear measurements.

To calculate the total shear stress, the mean shear stress has also been measured

from the velocity profile in (x − z) and (y − z) planes and added to corresponding

Reynolds shear stress, −ρu′w′ and −ρv′w′. The mean shear stress for (x − z) plane

is:
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Figure 3.18: Intersection of x − z and y − z planes for Reynolds shear stress mea-
surement around the sphere. Planes in figure are x − z plane at y/D =-1 and y − z
plane at x/D =2.

τx,z = µ
du

dz
(3.6)

where µ is dynamic viscosity. Similarly, the mean shear stress defined for (y−z)

plane.

From the velocity field, the out-of-plane vorticity can be calculated discretely

by taking the curl of the velocity field as shown by Eq. 3.7.

ωx =
∂Uz

∂y
−
∂Uy

∂z
≈

Uz j+1
−Uz j−1

2Yg
−

Uxk+1
−Uxk−1

2Zg
(3.7)
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Where j is in the y-direction while k is in the z-direction. Uy and Uz are the

velocities in the y- and z-direction, respectively, and Zg and Yg are the grid spacing

between the velocity vectors in the z- and y-direction, respectively.

Circulation (Eq. 3.8) was computed for various streamwise structures identified

in the flow in different relative submergences. A user defined threshold was chosen

such that the circulation was insensitive to changes in the threshold.

Γ =

∫

A

ωxdA ≈
∑

N

ωxkj
∆z∆y (3.8)

3.3.2 Hot-Film Anemometry

Measurements of the vortex shedding frequency and phase relationship be-

tween different points in the flow field were obtained using constant-temperature

anemometry with a TSI IFA-300 anemometer, a single-sensor, cylindrical hot-film

probe (TSI model 1210-20), a National Instruments (NI 6216, 16-bit resolution) data

acquisition board and collected using LabVIEW. The probe dimensions have been

presented in Fig. 3.19.

Figure 3.19: Cylindrical hot-film probe (TSI model 1210-20)

Thermal anemometry is a technique that utilizes heat transfer to measure the



www.manaraa.com

71

instantaneous velocity. The operation of constant-temperature anemometer (CTA)

which has been employed here is based on dependency of resistance on temper-

ature. The anemometer keeps resistance constant by employing the wire in a

Wheatstone bridge with feedback control.

The hot-film probes were calibrated against a propeller-type current meter

(Nixon-type 430) in the free-stream in the range 0.1 m/s < U <0.45 m/s. In all

cases, the axis of the hot-film sensor was horizontal and the overheat ratio was

1.06.

In low free stream turbulence experiments, a window (void) was cut in the

acrylic surface plate with dimensions 300× 300 mm, with the upstream edge of the

window 168 mm downstream of the center of the obstacle to allow access for the

hot-film probe supports. For comparison, a plate with only a narrow streamwise

slot 25 × 300 mm was also employed for probe access. The velocity and spectral

results were in agreement in both cases, so the window was used since it provided

much greater flexibility for probe positioning and model access.

For each geometry, the probe was positioned in the range 1 ≤ y/D ≤ 3 and

0.5 ≤ x/D ≤ 3. The probe was moved along the obstacle height in increments

of 0.25H. The signal from the hot-film was offset, low-pass filtered at a cutoff

frequency of 300 Hz, and then sampled at a frequency of 1 kHz. The sampling

duration for each record was 80 seconds. Power spectral density plots shown here

were generated from an average of 20 spectra.

Cross-correlation functions as shown in Eq. 3.9 were calculated via two single

hot-film probes positioned symmetrically at x/D = 1, y/D = ±1, with varying

spanwise position 0.25 ≤ z/H ≤ 1.

Ru1u2
(τ) =

∞
∫

−∞

u1(t)u2(t + τ)dt (3.9)
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To further explore the ellipsoid wake model proposed in Ch. 4 and Sec. 4.2.4,

two-point hot-film measurements were performed at x/D = 1 and y/D = 1, for

both ellipsoids, with one probe fixed at z/H = 0.25 and the other traversed in the

range 0.5 ≤ z/H ≤ 1 with increments of ∆z/H = 0.25 as shown in 3.20. Figure 3.21

illustrates the orientation of the sensor in the flow.

Figure 3.20: Two-point hot-film measurements

Figure 3.21: The orientation of the sensor in the flow]
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By the Wiener-Khintchine theorem, the cross-spectral density function for sig-

nals u1 and u2 (Eq. 3.10) form a Fourier transform pair with the cross-correlation

function (Ochi, 2005).

Su1u2
( f ) =2

∞
∫

−∞

Ru1u2
(τ)e−i2π f tdτ = Cu1u2

( f ) + iQu1u2
( f ) (3.10)

The real part of the cross-spectral density, Cu1u2
( f ) (co-spectrum) and imagi-

nary part, Qu1u2
( f ) (quadrature spectrum), defines the phase shift between the two

signals at frequency f :

φ( f )u1u2
= tan−1

Q( f )u1u2

C( f )u1u2

(3.11)

The spectral coherence was also computed as shown in Eq. 3.12.

Cohu1u2
(f) =

C2
u1u2

(f) + Q2
u1u2

(f)

Su1
(f)Su2

(f)
(3.12)
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CHAPTER 4
FLOW CHARACTERISTICS AROUND A WALL-MOUNTED

SEMI-ELLIPSOID

In this chapter, dye visualization, DPIV, and thermal anemometry are used to

investigate the effect of shape and relative submergence (the ratio of flow depth

to obstacle height, d/H) on the wake around four different low-aspect-ratio wall-

mounted obstacles and its evolution with downstream distance. A vortex skeleton

model is also proposed through observation of the wake structures and their shed-

ding behaviors.

Two sets of experiments are conducted in high and low free-stream turbulence.

As described in Sec. 3.1, the plenum of the water channel was modified resulting

in a low free-stream turbulence intensity. Therefore, the preliminary results of Sec.

4.1 have been completed in low free stream turbulence flow, Sec. 4.2.

4.1 High Free-Stream Turbulence Flow

4.1.1 Boundary Layer Characteristics

Boundary layer characteristics have been measured from the profile of the

streamwise mean velocity on the plate at the location of the obstacle as it has been

illustrated in Fig. 3.5. In the absence of obstacles, a boundary layer of thickness

δ99/H = 0.2 was present on the plate at the location of the obstacle center in the

high free-stream turbulence flow. Therefore δ/D were 0.133 and 0.179 for the

streamwise and transverse ellipsoids, respectively, and the similarly-dimensioned

cylinders. The displacement thickness (δ∗) and momentum thicknesses (θ) were

δ∗=0.94 mm and θ = 0.66 mm, providing a shape factor of 1.44. Despite the

relatively low boundary layer Reynolds numbers - Rex ≈ 54, 000, the profiles are

not very representative of a Blasius profile (shape factor Hs f = 2.59), likely due to

the relatively high free stream turbulence intensities.
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4.1.2 Flow Patterns in the Streamwise Symmetry
Plane

Some basic properties of the flow are first characterized by examining the ve-

locity, vorticity, and Reynolds shear stress fields on the symmetry plane in the

wake of the obstacle. Figures 4.1 through 4.3 contain the mean streamlines, each

obtained from 2000 velocity fields, in the symmetry plane upstream and down-

stream of each of the geometries. The cross section of the time-averaged horseshoe

vortex can be seen upstream of the obstacle junction (Fig.4.1). Similar results were

observed in the upstream of the cylinders in agreement with Baker (1980). The

horseshoe vortex is smaller for the streamwise ellipsoid than transverse ellipsoid.

Figure 4.2 shows the topology of the time-averaged horseshoe vortex system in a

closer view upstream of transverse ellipsoid. Similar topology is observed for the

streamwise ellipsoid. The vortices are numbered 1 and 2, with vortex 1 being the

called primary vortex and 2 the secondary vortex. The height of the primary vortex

is z/H = 0.05 or 0.25δ. The streamlines reveal that there is also a saddle point in the

horseshoe system of transverse ellipsoid which is also observed at the upstream

of the cylinders in other studies (Baker, 1980; Pattenden et al., 2005). Similar to

Pattenden et al., (2005), a third thin vortex between vortex 1 and 2 which has been

suggested by Baker (1980) was not found in the present work.

Table 4.1 contains the reattachment lengths on the symmetry plane non-dimensionalized

by the obstacle height and width. Reattachment lengths were defined where the

velocity gradient off the wall is zero or in other words, where the wall shear stress

is zero. The longest reattachment lengths (xr/H) are observed for the low-aspect-

ratio cylinder (AR = 0.67) and the transverse ellipsoid, which have the same aspect

ratio and very similar reattachment lengths (xr/H = 2.45 and xr/H = 2.41, respec-

tively). However, the streamwise ellipsoid and cylinder of matching aspect ratio

have more disparate reattachment lengths; the streamwise ellipsoid having a much
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Figure 4.1: Mean streamlines upstream of the ellipsoids in d/H = 3.9: Streamwise
ellipsoid (left), and transversely-oriented ellipsoid (right).

Figure 4.2: Topology of horseshoe vortex system upstream of the transverse ellip-
soid in d/H = 3.9.

shorter reattachment length (xr/H = 1.9) than the cylinder. The same conclusions

can be made by comparing values of xr/D, which are more commonly reported,

and are also presented in Table 4.1. In general, these measurements are similar to

others reported in the literature for low-aspect-ratio wall-mounted bodies. Hunt

et al. (1978) and Hussein and Martinuzzi (1996) observed reattachment lengths of

1.6D for a surface-mounted cube. For a circular cylinder of aspect ratio 1, Okamoto
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and Sunabashiri (1992) found xr/D = 2.9. For AR = 2, Leder (2003) and Frederich

et al. (2008) found xr/D = 2.2 and xr/D = 2.9, respectively, and Sumner et al. (2004)

noted xr/D = 3 for AR = 3. Pattenden et al. (2005) reported xr/D = 1.6 for a circular

cylinder of AR = 1 at ReD = 20 × 104. For a hemisphere, more representative of

the ellipsoid geometries studied here, Savory and Toy (1986) reported reattach-

ment lengths between 1.1D and 1.25D (varying with boundary layer parameters)

in boundary layers significantly thicker than that in the present study.

Obstacle xr/H xr/D

Streamwise ellipsoid 1.90 1.70

Transverse ellipsoid 2.41 1.61

Cylinder (AR=0.89) 2.24 2.00

Cylinder (AR=0.67) 2.45 1.63

Table 4.1: Mean dimensionless reattach-
ment lengths on the symmetry plane mea-
sured from the obstacle center line, and
nondimensionalized by obstacle height
(which remains constant for all obstacles)
and obstacle diameter.

Isocontours of non-dimensional transverse vorticity (ω∗y = ωyH/U) are shown in

Fig. 4.4. In addition to the regions of large positive ωy (counter clockwise rotation)

located in the vicinity of the shear layer separating from the top of the obstacle,

significant negative vorticity is found for each geometry adjacent to the base plane

in the vicinity of the recirculation region. Large negative values of vorticity also

exist on the lee faces of the ellipsoids.

The distributions of kinematic Reynolds shear stress (−u′w′/U2) in the wake of

the obstacles are shown in Fig. 5.5. The lowest magnitudes occur for the streamwise

ellipsoid. There is a fundamental difference between the flow field over the two
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(a) (b)

(c) (d)

Figure 4.3: Mean streamlines downstream of the obstacle in d/H = 3.9 for: (a)
Streamwise ellipsoid, (b) transverse ellipsoid, (c) cylinder (H/D=0.89) and (d) cylin-
der (H/D=0.67).

ellipsoids and that over the cylinders. On the symmetry plane, the cylinders have

separation points on the top surface at the leading and trailing edges. The shear

layer over the separated region on the end of the cylinders transitions to turbulence

before reattaching, and therefore, there are higher turbulence intensities in the shear

layer separating from the downstream edge of the cylinders. In contrast, for the

ellipsoids, there is only one separation point, near the top of the structure, and

therefore the Reynolds stresses are significantly lower just after separation.

Distributions of the turbulence intensities (v′2 +w′2)/U2 measured in transverse

planes as shown in Fig. 4.6 which indicate peak values near the symmetry plane
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(a) (b)

(c) (d)

Figure 4.4: Isocontours of non-dimensional spanwise vorticity, ω∗y, downstream
of the obstacle in d/H = 3.9 for: (a) streamwise ellipsoid, (b) transverse ellipsoid,
(c) cylinder (AR=0.89) and (d) cylinder (AR=0.67). Red shades indicate counter-
clockwise rotation and blue shades indicate clockwise rotation.

coincident with the locations of high Reynolds stresses shown in Fig. 5.5. However,

maximum turbulence intensities in the cylinder wakes appear near the lateral edges

of the cylinder.

4.1.3 Streamwise Vorticity Distributions

Figures 4.7 through 4.11 display isocontours of streamwise dimensionless vor-

ticity (ω∗x = ωxH/U) in the wakes of the obstacles in transverse (y-z) planes between

x/H = 1 and 4, with d/H = 3.9 using the experimental configuration shown in Fig.

3.13. Comparison with Table 4.1 indicates that the planes at x/H = 1, 1.5 and 2
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(a) (b)

(c) (d)

Figure 4.5: Isocontours of Reynolds shear stress, −u′w′/U2, downstream of the
obstacle in d/H = 3.9 for: (a) streamwise ellipsoid, (b) transverse ellipsoid, (c)
cylinder (AR=0.89) and (d) cylinder (AR=0.67).

fall within the recirculation region for all obstacles except the streamwise ellipsoid

(where x/H = 2 is downstream of the reattachment point). Each mean vorticity

field was obtained from 3000 instantaneous velocity fields.

Fig. 4.7 contains streamwise vorticity located at x/H = 1 for the four geometries.

The streamwise vorticity distribution in the wake of the streamwise ellipsoid at

x/H = 1 (Fig.4.35a) is similar to that observed by Pattenden et al. (2005) in the

wake of a low-aspect-ratio cylinder and is dominated by the tip and horseshoe

structures. Results reported in the literature and summarized in section 2.5 suggest

that this might be expected for a low-aspect-ratio geometry in a thin boundary
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(a) (b)

(c) (d)

Figure 4.6: Isocontours of non-dimensional turbulence intensities (v′2 + w′2)/U2,
downstream of the obstacle at x/H = 1.5 and d/H =3.9 for: (a) streamwise ellipsoid,
(b) transverse ellipsoid, (c) cylinder (AR=0.89) and (d) cylinder (AR=0.67).

layer. However, for the transverse ellipsoid (Fig.4.35b), a relatively subtle change in

obstacle geometry, the flow is dominated by a strong vortex pair inducing upwash.

It is noteworthy that the presence of upwash or downwash in the ellipsoid wakes

is consistent with the empirical rule of Mason and Morton (1987) for very low-

Reynolds number flows (ReH = O(100)). Mason and Morton (1987) proposed:

wide obstacles (aspect ratio< 1), which direct more flow over their crest, produce a

dominant vortex pair with a central upwash (i.e. a base vortex), while tall, narrower

obstacles (aspect ratio>1), in which the flow is preferentially directed around the

sides produce a dominant vortex pair with central downwash (ie. a tip vortex).
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As Figs. 4.7c and 4.7d show, base structures also exist, concurrently with the tip

vortices, in the wakes of the cylinders at x/H = 1. This is contrary to the results of

Pattenden et al. (2005) in which a similar geometry was examined at ReH = 200, 000.

(a) (b)

(c) (d)

Figure 4.7: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 1 at d/H = 3.9 for: (a) streamwise ellipsoid, (b) transverse ellipsoid, (c)
cylinder (H/D=0.89), and (d) cylinder (H/D=0.67). Red shades indicate counter-
clockwise rotation and blue shades indicate clockwise rotation.

Fig. 4.8 illustrates the streamwise vorticity patterns at x/H = 1.5. Here also,

the tip vortex pair is dominant in the wake of the streamwise ellipsoid and the

base vortex pair is dominant in the transverse ellipsoid. The distribution of the

tip vortices is very different for the high- and low-aspect-ratio cylinders (Figs. 4.8c

and 4.8d). For the low-aspect-ratio cylinder (AR=0.67) the tip vortices remain at

approximately the same vertical position, but they are significantly sheared toward
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the base plane in the wake of the higher-aspect-ratio cylinder. Furthermore, at

x/H = 1.5 the base vortex is no longer evident in the wake of the high-aspect-ratio

cylinder, and the wake of the low-aspect-ratio cylinder now contains a tertiary

vortex pair of the same sign as the tip vortex near the base plane (Fig. 4.8d).

(a) (b)

(c) (d)

Figure 4.8: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 1.5 in d/H = 3.9 for: (a) Streamwise ellipsoid, (b) transverse ellipsoid,
(c) cylinder (AR=0.89), and (d) cylinder (AR=0.67). Red shades indicate counter-
clockwise rotation and blue shades indicate clockwise rotation.

Similarly, Fig. 4.9 shows streamwise vorticity distributions at x/H = 2. At this

position, the base vortex pair is not visible for either of the cylinders. The shearing of

the tip structure created by the low-aspect-ratio cylinder is now evident (Fig. 4.9c),

as it was for the higher-aspect-ratio cylinder wake at x/H = 1.5. The comparatively

delayed evolution of the tip vortices for the low-aspect-ratio cylinder is consistent
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with the longer separated region of the low-aspect-ratio cylinder quantified in

Table 4.1. Although the base structure is still evident in the wake of the transverse

ellipsoid, it is significantly weakened.

(a) (b)

(c) (d)

Figure 4.9: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 2 in d/H = 3.9 for: (a) Streamwise ellipsoid, (b) transverse ellipsoid, (c)
cylinder (AR=0.89), and (d) cylinder (AR=0.67). Red shades indicate counter-
clockwise rotation and blue shades indicate clockwise rotation.

Further downstream, only the low-aspect-ratio cylinder (H/D = 0.67) and trans-

verse ellipsoid are considered. Fig. 4.10 and Fig. 4.11 show the streamwise vorticity

at x/H = 3 and 4, respectively. In these layers, the tip vortices merge with the legs

of the horseshoe vortex, which have the same sense of rotation, and finally end up

in fairly large trailing vortices as sketched in Pattenden et al. (2005).

It can be deduced from a comparison of Fig. 4.3 and Figs. 4.7 to 4.11 that the
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(a) (b)

Figure 4.10: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 3 in d/H = 3.9 for: (a) cylinder (AR=0.67), (b) transverse ellipsoid. Red
shades indicate counter-clockwise rotation and blue shades indicate clockwise ro-
tation.

(a) (b)

Figure 4.11: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 4 in d/H = 3.9 for: (a) Cylinder (AR=0.67), (b) Transverse ellipsoid. Red
shades indicate counter-clockwise rotation and blue shades indicate clockwise ro-
tation.

base vortex exists only inside the recirculation area, suggesting that the vortex lines

visible in the transverse planes of Figs. 4.7 through 4.11 may be connected through

the shear layer bounding the separated region. The dimensionless circulations

Γ∗ = Γ/(UH) of each of the identified structures in the wakes of the ellipsoids were

computed by integration of the streamwise component of the vorticity field within
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an isocontour of ω∗ = 0.07 (at this value, the circulation was found to be insensitive

to small changes in ω∗). The results are given in Figs. 4.12 and 4.13. Differences

in the circulations of the left and right structures represent a larger error than that

due to the PIV measurements, and therefore, the sizes of the error bars are given

by Equation 4.1:

± δΓ∗ = ±
(

|Γ∗L − Γ∗R|
)

/(2|Γ∗|) × 100% (4.1)

where Γ∗L and Γ∗R are the circulations of the left- and right-vortices in a given pair,

respectively.

Due to the ambiguity in the definition of the tip structure boundaries when it

descends to the base plane and combines with the horseshoe vortex (Figs. 4.9c and

4.9d, 4.10 and 4.11), no attempt has been made to distinguish the tip structure from

the connected like-signed vorticity, and therefore this contributes to the increase

in circulation of the tip vortices in the streamwise ellipsoid and cylinder wakes, as

shown in Figs. 4.12 and 4.13.

The mean circulation magnitude of the transverse ellipsoid base structures

decreases monotonically in the range 1 ≤ x/H ≤ 2, whereas the magnitude of the

tip structure increases slightly such that both vortex pairs have similar magnitude

at x/H = 2. Whereas the base structure in the wake of the streamwise ellipsoid is

very weak at all three locations, the tip structure undergoes a rapid initial decrease

in strength and remains approximately constant between x/H = 1.5 and 2. In

contrast, as Fig. 4.13 illustrates, the tip vortex strengths for both cylinders increase

significantly between x/H = 1 and 2, an artifact of the way they are defined in these

instances, as described above. The cylinder base structures diminish monotonically

with streamwise position. The streamwise decay of structures is expected, and may

be explained by turbulent diffusion of vorticity resulting in the mixing and mutual

annihilation of opposite-signed vortices on either side of the wake. However, since

there is no source of vorticity away from the boundaries, the strengthening of the
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base structures in the transverse ellipsoid wake with streamwise distance must be

explained by tilting of vorticity into the streamwise orientation, as will be described

later in a discussion of the instantaneous structure and dynamics of the wakes in

section 4.2.4.

Figure 4.12: Average dimensionless circulations of structures identified for ellip-
soids in Fig. 4.7 to Fig. 4.9a and 4.9b, and the left/right deviation.

4.1.4 The Role of Relative Submergence

Further experiments were conducted on the ellipsoids while varying the ratio

d/H, which we refer to as the relative submergence, as it is called in open channel

flows.

Given the sensitivity of the streamwise structures in the wakes of the ellipsoids

to the relatively subtle changes in geometry, the relative submergence was varied

to assess the extent that the boundaries are influencing the flow field. Figs. 4.14 and

4.15 show the influence of relative submergence on the distributions of streamwise
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Figure 4.13: Average dimensionless circulations of structures identified for cylin-
ders in Fig. 4.7 to Fig. 4.9c and 4.9d, and the left/right deviation.

vorticity in the wakes of the transverse and streamwise ellipsoids, respectively,

at x/H = 1.5. Table 4.2 shows the circulation measurements for structures in the

wake of transverse ellipsoid quantitatively. Fig. 4.14 qualitatively demonstrates

an inverse relationship between the strength of the base vortex and relative sub-

mergence for the transverse ellipsoid. In contrast, Fig. 4.15 suggests that, for the

streamwise ellipsoid, the strength of the base vortex is only sensitive to relative

submergence as d/H approaches 1. In comparison with the circulations of the base

vortices at d/H = 1, the tip vortices in both cases are rather weak and experience

modest variations with changes in relative submergence.

It is noteworthy that, at d/H = 1, the domain is no longer simply connected,

and a junction now occurs also at the tip of the obstacle. Thus, a weak horseshoe

vortex is observed adjacent to the top boundary in addition to the tip vortex, which

still persists. In the case of the streamwise ellipsoid, the tip structures transition

from elongated patches of vorticity following the projected perimeter of the body
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at d/H = 2.5 to concentrated and compact vortices at d/H = 1.

Fig. 4.16 illustrates the non-dimensional circulations of the tip and base vortices

in the ellipsoid wakes for the relative submergence values shown in Figs. 4.14 and

4.15. The base vortex circulation of the transverse ellipsoid increases linearly

with diminishing flow depth for relative submergence between d/H = 3.9 and

1. However, base vortex strength is quite insensitive to relative submergence for

d/H ≥ 3.9, which is consistent with the result of Shamloo et al. (2001). For the

streamwise ellipsoid, base vortex circulation is negligible at d/H = 2.5 and 3.9, and

then suddenly rises to nearly that of the transverse ellipsoid at d/H = 1. In contrast,

the tip vortex structures are much weaker than the base structures at d/H = 1, and

relatively insensitive to relative submergence.

(a) (b)

(c) (d)

Figure 4.14: Isocontours of non-dimensional streamwise vorticity distribution, ω∗x,
with varying relative submergence for the transverse ellipsoid at x/H = 1.5. (a)
d/H = 5.5 (b) d/H = 3.9, (c) d/H = 2.5 and (d) d/H = 1. Red shades indicate
counter-clockwise rotation and blue shades indicate clockwise rotation.
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Transverse ellipsoid Structure |Γ∗|

Very HRS, d/H = 5.5
tip 0.685

base 0.039

HRS, d/H = 4
tip 0.101

base 0.046

MRS, d/H = 2.5
tip 0.007

base 0.084

LRS, d/H = 1
tip 0.012

base 0.135

Table 4.2: Circulation of base vortex in dif-
ferent relative submergence in Figure 4.14.

(a) (b)

(c)

Figure 4.15: Isocontours of non-dimensional streamwise vorticity distribution, ω∗x,
with varying relative submergence for the streamwise ellipsoid at x/H = 1.5. (a)
d/H = 3.9 (b) d/H = 2.5 (c) d/H = 1. Red shades indicate counter-clockwise rotation
and blue shades indicate clockwise rotation.
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Figure 4.16: Tip and base vortex strengths with varying relative submergence for
streamwise and transverse ellipsoids.

To better understand the dynamics of the flow and to compare the global wake

structures for the low- and high-relative-submergence cases, dye visualizations of

the transverse ellipsoid wake were conducted at ReH = 5500 for d/H = 3.9 and

1, as shown in Fig. 4.17. At low-relative submergence (where the strongest base

vortex is found), the wake is sinuous and has the appearance of a Kármán vortex

street. In contrast, the wake is much more broad at high relative submergence,

with a Kelvin-Helmholtz-like instability developing on the separated shear layer.

These results are qualitatively in agreement with the consensus in the literature,

which reports the absence of Kármán shedding in the wakes of deeply-submerged

low-aspect-ratio obstacles, and the existence of Kármán shedding behind low-

aspect-ratio obstacles in shallow or stratified flows (d/H ≤ 1). (Smith and Grubišić,

1993; Castro et al., 2001; Shamloo et al., 2001). As Figs. 4.14 through 4.16 show,

the sharply contrasting shedding modes illustrated in Fig. 4.17 are accompanied

by not only significant increases in the strengths of the base vortices, but also more
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concentrated tip structures.

(a)

(b)

Figure 4.17: Dye visualizations of the flow around the transverse ellipsoid at
ReH = 5500. (a) d/H = 3.9, (b) d/H = 1.

Whereas ellipsoid aspect ratio controls the relative strengths of the tip and base

structures, Fig. 4.16 shows that the parameter d/H controls the strength of the base

vortex. There are three ways in which reducing d/H modifies the flow structure:

1) by modifying pressure gradients on and around the obstacle due to solid and

wake blockage as well as streamwise pressure gradients due to boundary layer

growth; 2) by modifying pressure gradients on and around the obstacle due to

increasing interactions with the upper boundary; and 3) in the case of d/H = 1,

by a fundamental change in the domain topology such that it is no longer simply
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connected.

It is well-known (Zdravkovich, 1997) that increasing blockage on two-dimensional

circular cylinders in the transitional shear layer Reynolds number range delays sep-

aration, decreases base pressure, strengthens the shed vortices, and increases drag.

Farell et al. (1977) investigated the effects of blockage ratio on cooling towers, and

found the base pressure coefficient in wind tunnel measurements to drop approxi-

mately 76% at 10% blockage. In the present work, the effects of blockage ratio are

most severe for d/H = 1, where the solid blockage ratios are 7.3% and 9.8% for the

streamwise and transverse ellipsoids, respectively.

The reduction of three-dimensionality (increasingly horizontal streamlines)

commensurate with decreasing relative submergence is also expected to increase

the magnitudes of pressure gradients and vortex strengths, and without further

investigation, it is difficult to distinguish these effects from blockage. It is note-

worthy that a reduction in d/H from 3.9 to 2.5 (where the blockage ratios are 2.9%

and 3.9% for the streamwise and transverse ellipsoids, respectively) increases the

strengths of the tip vortices in the streamwise ellipsoid wake and the base vortices

in the transverse ellipsoid wake. This change can be explained by an increase in

shed vortex strength by either of the mechanisms discussed above, in the context

of the model presented in Fig. 4.25.

For d/H = 1, the flow topology is necessarily different since boundary layer vor-

ticity on the upper plate forms a horseshoe at the upper junction. In addition, the

severe constraint on flow three-dimensionality results in quasi-two-dimensional

Kármán-like vortex shedding. However, it is evident that pressure gradients still

exist in the z-direction due to the significant upwash observed in the wake, indi-

cated by the strong base structures in Fig. 4.14d. Fig. 4.18 contains streamlines

in the symmetry plane of the low-relative-submergence wake of the streamwise

and transverse ellipsoids. A vertical bifurcation line is present, centered around
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x/H = 1.5, which separates upstream flow in the vortex formation region from

downstream flow in the wake. There are no concentrated vortices present in this

plane as in, for example, the base of the high-aspect-ratio cylinder examined by

Krajnović (2011), or the similar structures observed by Ozturk et al. (2008) in the

downstream corners of a circular cylinder at d/H = 1. Thus, the tip structures

observed in Fig. 4.14d are not connected through the symmetry plane, and must

therefore originate through either the generation of streamwise vorticity on the

surface of the ellipsoid or top boundary, or they must be formed by the tilting

of spanwise (z−) vorticity into the streamwise direction. Additional experiments

conducted in the low-turbulence-intensity facility as illustrated in Fig. 4.20 show

similar flow topology as that given in Fig. 4.18; however, while the tip structures

robustly appear downstream of the bifurcation line, they are not present upstream

of it. This suggests that the tip structures observed in Fig. 4.14d form as a result

of tilting of the Kármán vortices by the velocity gradient in the upper boundary

layer. Similar tilting is expected near the base plane; however, this effect is masked

due to its co-location with additional streamwise base vorticity. In this case, it is

anticipated that the base vorticity is formed on the ellipsoid surface by strong ver-

tical pressure gradients – low-turbulence experiments (Sec. 4.2.7) reveal that the

streamwise distribution of base vorticity is distributed along the projected perime-

ter of the ellipsoid at x/H < 1, and rotates and evolves into the form shown in Figs.

4.14 and 4.15 by self-induction.

4.2 Low Free-Stream Turbulence Flow

Given the relatively high free-stream turbulence levels present for the mea-

surements reported in Sections 4.1.2 through 4.1.4, the preliminary results of Sec.

4.1 have been completed in low free-stream turbulence flow section. The bound-

ary layer characteristics have been measured and flow patterns in the streamwise

symmetry planes have been accomplished. Similar (y − z) transverse layers were
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(a)

(b)

Figure 4.18: Mean streamlines in the wake of the streamwise and transverse ellip-
soids at d/H = 1.

considered to measure streamwise vorticity distributions in the wake of ellipsoids

and cylinders. Based on this vorticity distributions, a vortex skeleton model has

been proposed for ellipsoidal geometry which later will be verified by spectra and

correlation analysis in the wake. Relative submergence has been revisited in this

section and the spectral analysis and streamwise vorticity distributions in (y − z)

transverse layers will be discussed.

The comparison of wake structures through the high and low free-stream tur-

bulence flow is also interesting since not many studies have investigated the effects

of free-stream flow characteristics on the flow structures around finite bluff bodies.
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Existing studies that have been conducted note only a small effect on the wake

(Lee, 1975; Bearman and Morel, 1983). Bearman and Morel (1983) reviewed the

effects of free stream turbulence on the flow around bluff bodies and identified the

main FST influences as accelerated transition to turbulence in separated shear lay-

ers and increased spreading. Lee (1975) presented measurements of the mean and

fluctuating pressure field on a two-dimensional square cylinder in grid-generated

turbulence. With increasing free-stream turbulence intensity in the range 0.5 to

12.5%, Lee (1975) found a 73% increase in the base pressure and a reduction in

drag of the body. While the study did not heavily focus on the effects of FST

on flow structure, pressure measurements revealed that the strength of the vortex

shedding reduced as the intensity of the incident turbulence increased. Nakamura

(1993) considered the effects of FST on square prisms with aspect ratios of 1 and

10 with turbulence intensities of 10 to 12%. It was shown that if turbulence length

scale was comparable to top shear-layer thickness and body size, FST could have

an effect on the flow separation and reattachment.

4.2.1 Boundary Layer Characteristics

After completion of the experiments reported in the previous sections, the

plenum of the water channel was modified as described in Chapter 3.1, resulting in

a free-stream turbulence intensity below 0.3%. For the low-turbulence case, in the

absence of obstacles, a boundary layer of thickness δ99/H = 0.14 was present on the

plate at the location of the obstacle center in the high free-stream turbulence flow.

Therefore δ/D were 0.125 and 0.093 for the streamwise and transverse ellipsoids,

respectively, and the similarly-dimensioned cylinders. The displacement thickness

(δ∗) and momentum thicknesses (θ) were δ∗=2.07 mm and θ = 0.78 mm, providing

a shape factor of Hs f = 2.66. The profiles are representative of a Blasius profile

(shape factor Hs f = 2.59).
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4.2.2 Flow Patterns in the Streamwise Symmetry
Plane

Some basic properties of the flow are characterized again in low free-stream

turbulence by examining the velocity, vorticity, and Reynolds shear stress fields on

the symmetry plane in the wake of the obstacle. The results of symmetry plane

are qualitatively in agreement with high turbulence flow. Therefore, just results

for ellipsoids have been shown in the following section. The reattachment length

remained in the range of the results in the Sec. 4.1.2, therefore they have not

been shown here for brevity. Isocontours of non-dimensional transverse vorticity

(ω∗y = ωyH/U) are shown in Fig. 4.19. In addition to the regions of large positive

ωy (counter clockwise rotation) located in the vicinity of the shear layer separating

from the top of the obstacle, significant negative vorticity is found for each ge-

ometry adjacent to the base plane in the vicinity of the recirculation region. With

comparison to Fig. 4.4a, in low turbulence flow, large negative values of vorticity

was not observed on the lee faces of the ellipsoids.

(a) (b)

Figure 4.19: Isocontours of non-dimensional spanwise vorticity, ω∗y, downstream
of the obstacle in d/H = 3.9 for: (a) streamwise ellipsoid, (b) transverse ellipsoid
low free stream turbulence. Red shades indicate counter-clockwise rotation and
blue shades indicate clockwise rotation.



www.manaraa.com

98

The distributions of kinematic Reynolds shear stress (−u′w′/U2) in the wake

of the ellipsoids are shown in Fig. 4.20. Here also the lowest magnitudes occur

for the streamwise ellipsoid. Similar to high turbulence flow, for the ellipsoids,

there is only one separation point, near the top of the structure.The Reynolds stress

values shown in Fig. 4.4 are approximately five times those measured in the low

free-stream turbulence flow.

(a) (b)

Figure 4.20: Isocontours of Reynolds shear stress, −u′w′/U2, downstream of the
obstacle in d/H = 3.9 for: (a) streamwise ellipsoid, (b) transverse ellipsoid low free
stream turbulence.

4.2.3 Streamwise Vorticity Distributions

Figures. 4.21 and 4.24display isocontours of streamwise dimensionless vorticity

(ω∗x = ωxH/U), at the significantly reduced turbulence level, in the wakes of the

obstacles in transverse (y-z) planes between x/H= 0.5 and 1.5, with d/H = 3.9 using

the experimental configuration shown in Fig. 3.13. Each mean vorticity field was

obtained from 3000 instantaneous velocity fields.

The streamwise structures are qualitatively similar to the vorticity distributions

in Figs. 4.7 and 4.8. However, the circulation magnitudes of these streamwise
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structures are much larger in the low-turbulence case, and all of the structures

except the tip structure on the transverse ellipsoid increase in strength significantly

between x/H = 1 and 1.5 as shown in Fig. 4.22. These increases provide important

clues about vortex dynamics in the wake, which will be discussed in section 4.2.4.

Transverse Structure |Γ∗| δΓ∗ (%)

Turbulence intensity 7%
tip 0.0095 20.71

base 0.0456 8.5239

Turbulence intensity 0.3%
tip 0.021 37.72

base 0.163 9.55
Streamwise

Turbulence intensity 7%
tip 0.016 31.822

base 0.002 36.630

Turbulence intensity 0.3%
tip 0.078 2.34

base 0.0196 41.83

Table 4.3: Average dimensionless circulations of structures
identified for streamwise and transverse ellipsoid at x/H =

1.5 in two different turbulence intensity, and the left/right
deviation.

Figure. 4.23 contains streamwise vorticity located at x/H =0.5 to 1.5 for the

two cylinders. The streamwise structures are qualitatively robust with change in

turbulence intensity and are similar to the vorticity distributions in Figs. 4.7 and

4.8. However, the circulation magnitudes of these streamwise structures are much

larger in the low-turbulence case, and all of the structures except the base structures

on the high-aspect-ratio cylinder increase in strength significantly between x/H = 1

and 1.5 as shown in Fig. 4.24.

Also, another pair of vortex structures is visible in the upper wakes of the

cylinders (Figs. 4.23a and 4.23b)) between the tip vortices inducing upwash. The

existence of the observed vortices is controversial in existing literature and is ques-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 0.5, 1, 1.5 (top to bottom) in d/H = 3.9 at low free stream turbulence intensity
0.3% for: (a) (c) (e) Streamwise ellipsoid, (b) (d) (f) transverse ellipsoid. Red shades
indicate counter-clockwise rotation and blue shades indicate clockwise rotation.

tioned by Pattenden et al (2005), Palau-Salvador et al. (2010), and Krajnovic (2011).

To the authors knowledge, the only other studies that have noted the existence of
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Figure 4.22: Average dimensionless circulations of structures with FST=0.3% iden-
tified in Fig. 4.21 and the left/right deviation.

these vortices are Roh and Park (2003) and Hain et al. (2008).

4.2.4 Proposed Model for Ellipsoid Wakes and Its
Application to Cylinder Wakes

The results of this work show that dominant streamwise structures in the wake

of the ellipsoids, and to some extent also the cylinders, can be controlled with

relatively minor changes in geometry. In the subsequent discussion, we consider

these results in the context of previous work, propose a vortex model of the wake

that elucidates the mechanisms of selection between tip and base vortices, and then

examine the implications of relative submergence on this model.

The streamwise vorticity distribution shown in Fig. 4.35b, in which strong

base vortices are observed, corresponds to the same obstacle geometry and relative

submergence as the dye visualization in Fig. 4.17a. In accordance with previous
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(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 0.5, 1, 1.5 (top to bottom) in d/H = 3.9 at low free stream turbulence intensity
0.3% for: (a) (c) (e) Cylinder (AR=0.89), (b) (d) (f) Cylinder (AR=0.67). Red shades
indicate counter-clockwise rotation and blue shades indicate clockwise rotation.

studies on low-aspect-ratio geometries, Fig. 4.17a indicates that Kármán shedding

is not present. Models for higher-aspect-ratio bodies presented in the literature

(Sumner et al., 2004; Wang and Zhou, 2009; Bourgeois et al., 2011b) suggest that

tip and base structures are streamwise projections of individual curved Kármán
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Figure 4.24: Average dimensionless circulations of structures with FST=0.3% iden-
tified in Fig. 4.23 and the left/right deviation.

vortices or filaments connecting the vortices. The model proposed by Wang and

Zhou (2009) does not fit well with the present measurements in the wake of the

ellipsoids due to a) the significant disparities in the circulations of the tip and base

vortices in the near wake (idealizing the Kármán vortices as vortex tubes would

require equal circulation in the tip and base structures), b) the close proximity of

the tip and base structures, and c) the absence of Kármán shedding or large-scale

symmetric shedding as indicated in Fig. 4.35b.

The low-aspect-ratio cylinder wake model presented by Pattenden et al. (2005)

also does not account for the presence of base structures observed in either the

transverse ellipsoid or the cylinders despite similarities in aspect ratio, relative

submergence and boundary layer thickness. However, we do not believe that

the results presented here are in contradiction to those of Pattenden et al. (2005).

Two key differences separate the two studies: the aspect ratio investigated by
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Pattenden et al. (2005) is approximately 12% higher than the high-aspect-ratio

cylinder investigated here, and their Reynolds number is an order of magnitude

higher. Since both studies consider time-averaged flow fields in transverse planes,

information on the instantaneous structure and dynamics of the wakes are largely

lost, preventing direct comparison of those characteristics; however, it is likely that

enhanced turbulent mixing at the higher Reynolds number will increase mixing

and annihilation of base structures in the wake. Perhaps more importantly, Figs.

4.7c and 4.7d show a strong inverse relationship between base vortex strength

and cylinder aspect ratio within the range investigated here. This dependence

is quantified in Fig. 4.13 which shows that the base vortex circulation drops by

approximately 85% as the aspect ratio increases from 0.67 to 0.89. It is therefore

plausible that this trend will continue with increasing aspect ratio such that a much

weaker base vortex might exist for a cylinder with aspect ratio 1.

The wake model proposed by Mason and Morton (1987) to support their em-

pirical rule for obstacle wakes at Re = O(100) consists of arch vortices that are

either tilted upstream such as to produce downwash in the case of taller obstacles,

or tilted downstream such as to produce upwash in the case of wider obstacles.

The ellipsoid wake vorticity distributions presented in sections 4.1.2 and 4.1.3 are

consistent with both the empirical rule and the vortex model presented by Mason

and Morton (1987). However, the cylinder wakes are more complex and contain

features that are not accounted for by their model. The vortex loops shown in

hemisphere wakes by Savory and Toy (1986) are also consistent with this model.

Likewise, the low-aspect-ratio pyramid wakes observed in thick boundary layers

by Chyu and Natarajan (1996) and Martinuzzi and AbuOmar (2003) also appear

to have similarities with the arch model of Mason and Morton (1987). However,

unlike all of these results which were obtained in boundary layers with thicknesses

on the order of obstacle height (or width), in the present work, the boundary layer
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is thin.

As suggested in the previous section, the model of Mason and Morton (1987)

reasonably emulates the primary features observed in the wakes of the streamwise

and transverse ellipsoids. However, no explanation is provided for the physical

mechanisms governing the selection of upwash or downwash in the wake. For

the ellipsoid wakes, we propose a similar model, shown in Fig. 4.25, which does

account for the selection. The dominant structures in the deeply-submerged el-

lipsoid wakes are the horseshoe vortex system (not shown in the figure) and the

arch-shaped shear-layer containing the Kelvin-Helmholtz instability shown in Fig.

4.17a. We suggest that two dominant mechanisms govern the dynamics of the

resulting arch structures to produce the observed mean flow: 1) Biot-Savart self-

induction due to the curvature of the vortex which, due to the vorticity orientation,

would tend to drive the top of the arch upstream as shown in Fig. 4.25a; and 2)

the shear flow onto which the vortex is superimposed (due to the ground plane

boundary layer and other wake constituents), which would advect the top of the

arch downstream more quickly than the base as shown in Fig. 4.25b.

For the case of the ellipsoids, obstacle aspect ratio governs the balance be-

tween these two mechanisms through the curvature of the arch vortices (which

is determined by the curvature of the projected obstacle perimeter when viewed

in the streamwise direction). The streamwise ellipsoid generates arch structures

of higher curvature, which are deformed upstream by Biot-Savart self-induction,

forming the observed tip structures in the mean (Fig. 4.25a). On the other hand,

the transverse ellipsoid produces arch structures of lower curvature which have

weaker self-induction so that the influence of the external shear flow dominates,

bending the structures downstream to produce the base structures (Fig. 4.25b).

This model of wake structure and dynamics correlates well with the observa-

tions of wakes in the low-turbulence flow, as shown in Figs. 4.21 and 4.22, in which
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(a)

(b)

Figure 4.25: Proposed evolution of the arch structures for (a) the streamwise el-
lipsoid (self-induction dominated deformation) and b) the transverse ellipsoid
(external shear dominated deformation). The arrows indicate the orientation of the
vorticity vector.

the dominant structures increase in strength with increasing downstream distance

(thus, more arch filaments penetrate the measurement plane as they become more

inclined). However, as Fig. 4.12 indicates, these structures are generally decreasing

in strength with increasing x/H in the high turbulence flow. This may be attributed

to enhanced turbulent diffusion and cross-cancellation of the streamwise structures.

For example, the Reynolds stress values shown in Fig. 4.20b are approximately

five times those measured in the low free-stream turbulence flow (see Fig. 4.19).

The model presented in Fig. 4.25 is an idealization that describes the dominant
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wake dynamics; however, minor features, such as the residual base and tip vortices

for the streamwise and transverse ellipsoids, respectively, are not accounted for by

the model. This is likely due to the generation of streamwise vorticity on the

surfaces of the obstacle and base plane. For example, Figs. 4.21d and 4.21f contain

strong base vortices, explained by the model of Fig. 4.25b with an opposite-signed

tip vortex. That the tip vortex does not increase in strength with downstream

distance, as shown in Fig. 4.22, supports that it is fundamentally a different type

of structure than that shown in Fig. 4.25.

The flow structures observed in the cylinder wakes are more complicated due

to the square corners and flat tip which govern the separation and reattachment

processes at the leading- and trailing edges of the free end. Unlike the ellipsoid

wakes, a dominant tip vortex exists in the wakes of both cylinders due to this

robust separation and the vorticity persists at this location in the transverse plane

for a considerable distance downstream (see, for example, Fig. 4.10a). These tip

vortices are similar in appearance to those observed by Pattenden et al (2005), and

it is expected that they have been formed by the separation of the upwash flow on

the sides of the cylinder as described in Sec. 2.2.2. Vortical structures of opposite

sign (akin to the base vortices) also form in the near wake directly below the tip

structures for both low- and high-aspect-ratio cylinders (Figs. 4.7c and 4.7d or

Figs. 4.23c and 4.23d). To the authors’ knowledge, this is the first observation

of such structures in the wakes of low-aspect-ratio cylinders. It is plausible that

these base structures are also generated by the deformation of arch structures

shed into the wake, as described in Sec. 4.2.4. However, due to the rectangular

profile of the cylinders, the shape of the arch structures shed, and their self-induced

deformation, the wake structure of the cylinder is necessarily more complex than

that of the ellipsoids. This is evidenced by a tertiary vortex pair (of the same sign as

the tip vortices) directly beneath the base vortices in Fig. 4.8dor in Fig. 4.21f, which
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suggests the presence of a higher-order bending instability in the vertical legs of the

arch structures. Although the wakes of the low- and high-aspect- ratio cylinders are

not as dramatically different as the low- and high-aspect-ratio ellipsoids, a similar

(but weaker) trend is still evident as the base vortices are weaker in the wake of the

high-aspect-ratio cylinder.

4.2.5 Spectra and correlation analysis in the wake

The present section focuses on the spectra and phase characteristics in the

wakes of low-aspect-ratio ellipsoidal obstacles of aspect ratios H/D = 0.67 and 0.89

(where H is the ellipsoid height and D is the base width), and circular cylinders of

matching H/D. Mean vorticity distributions in the wakes of these obstacles were

investigated Sec. 4.1.3. In the present section, these wakes are further interrogated

using thermal anemometry, and spectral and cross-correlation analysis to elucidate

the origins of the mean flow structures and their dynamics.

Figures 4.27 and 4.28 show the power spectral density (PSD) functions of the

streamwise velocity component measured for the transverse and streamwise ellip-

soids at d/H = 3.9. The hot-film probe was placed at spanwise locations x/D = 1, 2

and 3, and for z/H = 0.25, 0.5, 0.75, and 1. The z-axis of the power spectra is offset to

allow comparison between measurements at different locations. Due to symmetry,

the power spectra from either side are nearly identical and only the spectra from

one side of the obstacles are shown.

Weak spectral peaks are apparent in the wakes of both the transverse and

streamwise ellipsoids. For all streamwise and spanwise positions shown in Fig.

4.27, the power spectral density for the transverse ellipsoid exhibits a peak at

St = 0.188 ( fs = 0.875 Hz) at all values of z/H at x/D = 1, 2, and 3. A more broad

peak, which is almost exactly 1/3 the frequency of the higher-frequency mode, is

centered around St = 0.058 ( fs = 0.273 Hz) at z/H = 0.25 for x/D = 1, and up to

z/H=0.5 for x/D = 2. These low-frequency peaks significantly weaken between
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x/D = 2 and 3. Similar peaks were observed by Castro and Watson (2004) for low-

taper-ratio triangular plates. They surmised that the origin of the low-frequency

mode was plausibly a beat frequency since the shedding frequency was not well-

defined at lower taper ratios. That explanation seems unlikely in the present case

since, as we will show in the following paragraph, other geometries exhibit a similar

low-frequency peak even in the absence of higher-frequency shedding. Whereas

the base shedding mode was antisymmetric in the tapered plate wakes, the low-

frequency mode was symmetric and found only near the tip. As will be shown

later in this section, the shedding is predominantly in-phase for the ellipsoids at

d/H = 3.9.

Dye visualizations of the transverse ellipsoid at ReH = 5500 reveal a somewhat

intermittent plunging of the shear layer in the near wake (i.e. penetration of the

arch vorticity into the recirculation region), which occurs with frequency consis-

tent with the broad peaks observed in the spectra. A sequence of PIV images in

the streamwise symmetry plane at Re = 17, 800 also confirm the existence of the

plunging phenomenon; however, the PIV sequence is not sufficiently long to as-

sess the frequency of occurrence. Some snapshots of dye visualizations have been

illustrated in Fig. 4.26. Inserted white arrows show plunge occurrence.

The power spectral density function is similar for the streamwise ellipsoid,

as shown in Fig. 4.28. In this case, the primary peak is observed at St = 0.183

( fs = 1.14 Hz) which is only a marginally measurable difference from that of the

transverse ellipsoid. Notably, this peak is essentially non-existent at x/H = 1 for

all streamwise positions. This may be due to the increased tilting of structures in

the case of the streamwise ellipsoid, as will be quantified in Sec. 4.2.6. For the

streamwise ellipsoid, the broad, low-frequency peaks occur at Strouhal numbers of

St = 0.041, 0.0358, and 0.0256 ( fs = 0.256, 0.224, and 0.160 Hz), at positions of z/H =

0.25, 0.5, and 0.75 and then increase to St = 0.031 ( fs = 0.188 Hz) at z/H = 1 for
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(a)

(b)

(c)

Figure 4.26: Snapshots of dye visualizations of the transverse ellipsoid at ReH =

5500 unveiling intermittent plunging of the shear layer by a time interval of 8 s.
Inserted white arrows show plunge occurrence.
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all streamwise locations. Contrary to the transverse ellipsoid, the low-frequency

peaks persist at all three streamwise measurement locations.

(a) (b) (c)

Figure 4.27: The power spectral density function, PSD, of the of the streamwise
velocity component in d/H = 3.9 for transverse ellipsoid at y/D = 1: (a) x/D = 1,
(b)x/D = 2 and (c) x/D = 3. Each spectrum is the average of 20 individual spectra.
Spectra are off-set by constant factor for clarity.

For circular cylinders of matching H/D, Fig. 4.29 shows the spectra at x/D =

1 and y/D = 1. Whereas the cylinder of aspect ratio H/D = 0.67 displays no

discernible peak in the frequency spectrum, the cylinder of H/D = 0.89 exhibits

a weak peak of St = 0.065. Similar to the streamwise ellipsoid (with matching

H/D), the broad, low-frequency peaks occur at Strouhal numbers of St = 0.0200

( fs = 0.125), at positions of z/H = 0.25, 0.5, and 0.75 and then increase to St = 0.0240

( fs = 0.15 Hz) at z/H = 1. If the power spectral density function for the lower-

aspect-ratio cylinder is plotted on a linear axis as shown in Fig. 4.30, a weak peak

at St = 0.084 is found for the cylinder of H/D = 0.67, which is very similar to the

weak dominant frequency observed by Pattenden et al. (2005) at St = 0.09 for a
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(a) (b) (c)

Figure 4.28: The power spectral density function Eu of the of the streamwise
velocity component in d/H = 3.9 for streamwise ellipsoid at y/D = 1: (a) x/D = 1,
(b)x/D = 2 and (c) x/D = 3. Each spectrum is the average of 20 individual spectra.
Spectra are off-set by constant factor for clarity.

cylinder of aspect ratio 1 as shown in Fig. 2.36.

Figure 4.29: The power spectral density function of the streamwise velocity com-
ponent in d/H = 3.9 for cylindrs of AR=0.67 (left) and AR=0.89 (right) at x/D = 1
and y/D = 1. Each spectrum is the average of 20 individual spectra. Spectra are
off-set by constant factor for clarity.
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Figure 4.30: The power spectral density function of the streamwise velocity com-
ponent in d/H = 3.9 for cylindrs of AR=0.67 in linear axis and at x/D = 1, y/D = 1,
and z/H = 0.5

Figure 4.31a shows cross-correlations of velocity fluctuations for measurements

at symmetric positions in the wake of the transverse ellipsoid at x/D = 1, y/D = ±1,

and equal, varied values of z/H. The auto-correlation function at x/D = 1, y/D = 1,

and z/H = 0.25 is also shown in the figure. The spatial cross-correlations, τ = 0 s, are

positive for each wall-normal position, indicating in-phase shedding on opposite

sides of the ellipsoid. Also, the values increase monotonically with distance from

the wall, similar to the pyramid measurements of Morrison et al. (2006). A small-

amplitude, high-frequency component is superimposed on the auto- and cross-

correlation functions at z/H = 0.25, unlike the cross-correlations further from the

base plane. These fluctuations are likely caused by unsteadiness in the horseshoe

vortex. In comparison, Seal et al. (1995) observed the cycle of vortex generation,

amalgamation, and decay to occur at a frequency of 4.65 times that of the shedding

frequency in the wake of a low-aspect-ratio rectangular block, which is consistent

with the features shown in the correlations at z/H = 0.25 shown in Fig. 4.31a.
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Cross-correlations at symmetric positions in the wake of the streamwise ellip-

soid are given in Fig. 4.31b. A positive spatial correlation is evident at z/H = 0.25

and 1; however, the values are close to zero near the mid-span of the ellipsoid and

the cross-correlation function is less periodic than for the transverse ellipsoid, sug-

gesting increased unsteadiness in the flow separation lines on the more streamlined

obstacle and thus a higher degree of randomness in the formation and evolution

of the arch structures.

(a) (b)

Figure 4.31: Correlations of the fluctuating velocity at d/H=3.9, x/D=1, and y/D=±1
for the (a) transverse and (b) streamwise ellipsoid.

4.2.6 Model for Ellipsoid Wakes

The models shown in Fig. 4.25 imply that the presence of upwash or downwash

in the wakes of the transverse and streamwise ellipsoids, respectively, can be at-

tributed to the tilting of the arch vortex tips upstream or downstream, as explained

in Sec. 4.2.4. Here, we further consider and validate this model by examining local

relative phases of vortex shedding.

Simultaneous thermal anemometry measurements were acquired with two
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probes at x/D = 1 and y/D = 1. The reference probe u1 was positioned at z/H = 0.25

while the other probe u2 was positioned at z/H = 0.5, 0.75, and 1. The spectral

coherence between the two signals, Cohu1u2
, contained a pronounced peak at all

spanwise locations for the transverse ellipsoid but not at z/H = 1 in the wake of

the streamwise ellipsoid. The peak value of Cohu1u2
ranges from 0.46 at z/H = 0.2

to 0.15 at z/H = 1 for the streamwise ellipsoid and from 0.56 at z/H = 0.2 to about

0.25 at z/H = 1 for the transverse ellipsoid as shown in Fig.4.32. In comparison,

Castro and Watson (2004) found a cross-spectral coherence of approximately 0.2 at

the spectral peak associated with weak shedding in the wake of plates with taper

ratios of 0.58 and 1. For a square cylinder of aspect ratio 7, Wang and Zhou (2009)

reported values varying from 0.9 at z/D = 2 to 0.3 at z/D = 7.

The relative phase shift between signals u1 and u2 was calculated from the spec-

tral coherence, as discussed in Ch.3.1. Figure 4.33 shows the variation of the phase

shift, φu1u2
( fs) as a function of shedding frequency fs for the transverse ellipsoid. A

plateau occurs at φu1u2
at fs = 0.875, the dominant shedding frequency shown in

Fig. 4.27, where φu1u2
= 0.0068π radians, supporting the conclusion obtained from

the cross-correlation analysis that the velocity fluctuations on opposite sides are in

phase.

Fig. 4.34 shows the dependence of φu1u2
on z/H in the wake of the transverse

and streamwise ellipsoids at the respective dominant frequencies ( fs=0.875 Hz and

1.14 Hz). Positive phase shifts indicate u1 leading u2. The phase shifts, which

are positive in the case of the transverse ellipsoid, indicate tilting of the tip of the

arch structure in the downstream direction, as indicated in Fig. 4.25b. Likewise,

the negative phase shifts observed in the streamwise ellipsoid are consistent with

upstream tilting of the arch shown in Fig. 4.25a. There is no plateau in φu1u2
for the

streamwise ellipsoid at fs = 1.14 Hz for z/H = 1, due to the low spectral coherence

for that location. Therefore, there is no point at z/H = 1 in Fig. 4.34b. This
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observation is consistent with larger magnitudes of the phase shifts observed for

the streamwise ellipsoid, compared to the transverse ellipsoid, closer to the base

plane, which suggest greater tilting of the arch structures.

(a) (b)

Figure 4.32: Spectral coherence Cohu1u2
between streamwise fluctuating velocity

u1 and u2 for (a) streamwise, and (b) transverse ellipsoid at x = y = 1D. u1 was
measured at z/H = 0.2 and u2 was measured from z/H = 0.4 to 1.

4.2.7 Relative Submergence Revisited

The effect of relative submergence at high free-stream turbulence flow on the

wake structures located at one specific transverse plane, x/H = 1.5, is described

in Sec. 4.1.4. To better understand the effect of relative submergence on the wake
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Figure 4.33: The phase shift between u1 and u2 for transverse ellipsoid at x = y = 1D.
u1 was measured at z/H = 0.2 and u2 was measured from z/H = 0.4 to 1. Results
with u2 at z/H = 0.4 have been illustrated as an example.

structures and their evolutions with downstream distance, some of the experiments

reported in Sec. 4.1.4 have been completed. These results are qualitatively in agree-

ment with the findings observed in Sec. 4.1.4.To shed more lights on the dynamics

of the low-relative-submergence wake, spectral analysis has been conducted for

d/H =2.5 and 1.

At d/H = 1, the flow topology is necessarily different since boundary layer vor-

ticity on the upper plate forms a horseshoe at the upper junction. It is noteworthy

that at d/H = 1, the domain is no longer simply connected and a junction now

occurs also at the tip of the obstacle. Thus, a weak horseshoe vortex is observed

adjacent to the top boundary in addition to the tip vortex, which still persists. In

the case of the streamwise ellipsoid, the tip structures transition from elongated

patches of vorticity following the projected perimeter of the body at d/H = 2.5 (Fig.

4.15b) to concentrated and compact vortices at d/H = 1. An inverse relationship

was observed between the relative submergence and the strength of the base struc-

tures for the ellipsoids, which is attributed to the modified pressure gradients on

the surface of the structure and the tilting of Kármán vortices by the shear in the

boundary layer.
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(a)

(b)

Figure 4.34: Dependence of the phase angle φu1u2
( f s) between streamwise fluctu-

ating velocities u1 and u2 at x/D = 1 and y/D = 1 at varying spanwise locations,
where u1 was measured at z/H = 0.2 and u2 was measured from z/H = 0.4 to 1. (a)
Streamwise ellipsoid, (b) Transverse ellipsoid.

Figures 4.35 through 4.38 display isocontours of streamwise dimensionless vor-

ticity (ω∗x = ωxH/U) in the wakes of the ellipsoids in transverse (y − z) planes

between x/H = 0.5 and 2, at d/H = 1. Figure 4.35 contains streamwise vorticity

located at x/H = 0.56 and 0.75 (trailing edges) for the two ellipsoids. The horse-

shoe and strong base vortices are visible in both ellipsoids. The base structures are

stronger for the streamwise ellipsoid than transverse.
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(a) (b)

Figure 4.35: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 0.56 and 0.75 at d/H = 1 for: (a) streamwise ellipsoid, (b) transverse ellipsoid.
Red shades indicate counter-clockwise rotation and blue shades indicate clockwise
rotation.

Figure. 4.36 illustrates the streamwise vorticity patterns at x/H = 1. In this

location, the wake of the streamwise ellipsoid contains a concentrated transverse

vortex observed just downstream of the ellipsoid. This structure is analogous to the

rotor vortex observed in pyramid wakes as shown in Fig. 2.15, which appears to be

connected to the tip structures observed in the wake. The concentrated transverse

vortex was not observed for transverse ellipsoid in at x/H = 1. Figure 4.37 shows

streamwise vorticity distributions at x/H = 1.5. The tip structures in the wake of the

streamwise ellipsoid at x/H = 1.5 are stronger than tips at x/H = 1 due to the tilting

of the structures downstream. The wake of the transverse ellipsoid at x/H = 1.5

presents the similar concentrated transverse vortex (analogous to the rotor vortex)

observed for the streamwise ellipsoid at x/H = 1. As shown in Fig. 4.18, this delay

is in agreement with the existence of bifurcation further downstream. Figure. 4.38

shows the streamwise vorticity at x/H = 2. The structures in the wake are weak at

this location probably due to an increase in shear flow between the top plate and

base plate.

As mentioned in Sec. 4.1.4, an inverse relationship was observed between the
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(a) (b)

Figure 4.36: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 1 in d/H = 1 for: (a) Streamwise ellipsoid, (b) transverse ellipsoid. Red
shades indicate counter-clockwise rotation and blue shades indicate clockwise ro-
tation.

(a) (b)

Figure 4.37: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 1.5 in d/H = 1 for: (a) Streamwise ellipsoid, (b) transverse ellipsoid.Red
shades indicate counter-clockwise rotation and blue shades indicate clockwise ro-
tation.

relative submergence d/H and the strength of the base structures in the transverse

and streamwise ellipsoid wakes. A dominant base structure was even observed in

the streamwise ellipsoid wake at d/H = 1, despite that it was barely detectable for

d/H ≥ 2.5. Furthermore, dye visualizations conducted by Hajimirzaie et al. (2012)

around a transverse ellipsoid at ReH = 5500 showed that, while the wake is quite

symmetric at d/H = 3.9, antisymmetric shedding is observed at d/H = 1.
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(a) (b)

Figure 4.38: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/H = 2 in d/H = 1 for: (a) Streamwise ellipsoid, (b) transverse ellipsoid. Red
shades indicate counter-clockwise rotation and blue shades indicate clockwise ro-
tation.

As also discussed in Sec. 4.1.4, reduction in relative submergence results in

significant increases in blockage ratio. For wall-mounted cylinders with aspect

ratios between 4 and 10, West and Apelt (1982) found Strouhal number to be

unaffected for blockage ratios less than 6% at Reynolds numbers between 2×104 and

6 × 104. For higher blockage ratios, the Strouhal number was found to rise rapidly

with blockage ratio. While this may quantitatively affect the observed shedding

frequencies, it is not expected to change the qualitative shedding behavior, which

we discuss below.

To better understand the dynamics of the low-relative-submergence wake, the

spectral analyses reported above have been conducted for d/H=2.5 and 1. Figs.

4.39 and 4.40 show the power spectral density function for the streamwise and

transverse ellipsoids at multiple spanwise positions for d/H = 2.5, with y/D = 1

and x/D=1 to 3. Weak dominant frequencies are apparent in the wakes of both

the transverse and streamwise ellipsoids. The Strouhal numbers are St = 0.188

and 0.183 for the transverse and streamwise ellipsoids, which is unchanged from

the Strouhal numbers observed at d/H = 3.9 for both ellipsoids. However the
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peaks in the power spectral density are somewhat more broad at d/H=2.5 for both

ellipsoids. At x/D=2 and 3 the power spectrum for the streamwise ellipsoid exhibits

weaker peaks (Figs. 4.40b, 4.40c) compared to the same locations in the transverse

ellipsoid wakes (Figs. 4.39b and 4.39c). The power spectral density functions for

the cylinders at d/H=2.5 are not significantly different than those at d/H=3.9, and

therefore these data have not been shown.

(a) (b) (c)

Figure 4.39: The power spectral density function of the of the streamwise velocity
component at d/H=2.5 and y/D=1 for the transverse ellipsoid at (a) x/D=1, (b)
x/D = 2 and (c) x/D = 3. Each spectrum is the average of 20 individual spectra.
Spectra are off-set by constant factor for clarity.

Figure 4.41 shows the power spectral density functions for all four obstacle

geometries with d/H = 1, at x/D = 1 and y/D = 1. Since z/H = 1 now corresponds

to the location of the upper plate, the top measurement position has been changed

to z/H = 0.85. It should be noted that, since the top and bottom plates are not

identical, slight differences exist in the boundary layers on the base plane and top

plate. The relative boundary layer thickness on the top plate was δ99/H = 0.18.

The dominant peaks are more distinct than at d/H = 3.9 in all cases except

the streamwise ellipsoid, which has actually further weakened compared with
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(a) (b) (c)

Figure 4.40: The power spectral density function of the of the streamwise velocity
component at d/H=2.5 and y/D=1 for the streamwise ellipsoid at (a) x/D=1, (b)
x/D = 2 and (c) x/D = 3. Each spectrum is the average of 20 individual spectra.
Spectra are off-set by constant factor for clarity.

d/H = 2.5. Most notably, however, both cylinders now have a dominant shedding

frequency as well as a secondary, higher-frequency peak.

At d/H = 1, the Strouhal number has significantly increased to 0.357 and 0.345

for the streamwise and transverse ellipsoid respectively. It is expected that the in-

crease in Strouhal number is due to a combination of reduced three-dimensionality

due to the proximity of the top surface, the change in topology as the obstacles now

span the entire height of the domain, and blockage effects. The shedding behavior

is very similar for both cylinders, also with essentially the same shedding Strouhal

numbers, which were measured to be St = 0.248 for the AR = 0.67 cylinder and

St = 0.243 for the AR = 0.89 cylinder. The secondary peaks occur at St =0.694, 0.488

,and 0.486 in the wakes of the transverse ellipsoid, and cylinders of AR=0.67 and

AR=0.89, respectively, which represents the second harmonic of fs, as also observed

by Wang and Zhou (2009) and Okamoto and Sunabashiri (1992) for a square cylin-

der of aspect ratio 7. It is particularly interesting that this only occurs at d/H = 1

where the shedding behavior begins to approach that of much higher-aspect-ratio
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cylinders, as will be discussed in the following paragraph. Furthermore, Wang and

Zhou (2009) did not observe the second harmonic near the tip where the Kármán

shedding does not exist.

(a) (b)

(c) (d)

Figure 4.41: The power spectral density function of the streamwise velocity com-
ponent at d/H = 1 for: (a) streamwise ellipsoid, (b) transverse ellipsoid, (c) cylinder
(H/D = 0.67), (d) cylinder (H/D = 0.89) at x/D = 1 and y/D = 1. Each spectrum
is the average of 20 individual spectra. Spectra are off-set by constant factor for
clarity.

Auto- and cross-correlations of the velocity fluctuations were performed for

symmetrically-positioned sensors in the wakes of each of the four geometries at

d/H = 1. Figure 4.42 shows the results for x/D = 1 and y/D = ±1 in the wake of
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the transverse ellipsoid. The cross-correlation values are now negative at τ = 0

s, indicating that the shedding is antisymmetric, consistent with the reduced-

Reynolds-number flow visualizations of Sec. 4.1.4. The cross correlation for the

streamwise ellipsoid is shown in Fig. 4.43, again exhibiting negative values at τ = 0

s. Somewhat surprisingly, the magnitude of the auto-correlation near the tip is two

to four times that at the other positions.

Figure 4.42: Auto- and cross-correlation of fluctuating velocity on opposite side for
transverse ellipsoid an d/H = 1 in x/D = 1, y/D = ±1, and z/H = 0.25 to 0.85 .
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Figure 4.43: Auto- and cross-correlation of fluctuating velocity for streamwise
ellipsoid at d/H=1 and x/D=1,y/D = ±1, z/H = 0.25 to 0.85
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CHAPTER 5
FLOW CHARACTERISTICS AROUND A WALL-MOUNTED SPHERE

The motivation of this part of the study is to provide detailed flow characteristics

around a fully submerged, wall-mounted, isolated spherical obstacle representa-

tive of a boulder in a steep mountain stream. The results of this study can provide

insight to predict sediment transport characteristics in more complex riverine envi-

ronments involving large obstacles. Of primary interest in this study are the effects

of dominant flow structures and their dynamics on the bed shear stress distribu-

tions surrounding the obstacle. These measurements will inform future work to

predict sediment transport characteristics in shallow flows.

The experiments reported in this chapter have been conducted in low free

stream turbulence. As it has been shown in Sec.3.1, boundary layer characteristics

have been measured and for the sphere, δ99/H = 0.14 which provided ratios δ/D =

0.14, as well.

5.1 Flow Patterns in the Streamwise Symmetry
Plane

Some basic properties of the flow are first characterized by examining the veloc-

ity, vorticity, and Reynolds shear stress fields on the symmetry plane in the wake

of the sphere. Fig. 5.1b contains the mean streamlines, obtained from 2000 veloc-

ity fields, in the symmetry plane upstream and downstream of the sphere. The

reattachment length on the symmetry plane non-dimensionalized by the obstacle

width is xr/D = 1.90. In other investigations of wall-mounted spheres, Okamoto

(1980), Tsutsui (2008), and Ozgoren et al. (2012) determined xr/D = 2.50, 1.65, and

1.42, respectively. This magnitude is also similar to other measurements reported

in the literature for wall-mounted bodies of aspect ratio O(1) as reviewed in Sec.

4.1.2. Okamoto (1980) reported xr/D = 2.40 for hemisphere cylinder with matched

aspect ratio of sphere. For a hemisphere, Savory and Toy (1986) reported reattach-
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(a) (b)

Figure 5.1: Mean streamlines of the sphere: (a) upstream (b) downstream.

ment lengths between 1.1D and 1.25D (varying with boundary layer parameters)

in boundary layers significantly thicker than that in the present study. As it has

been reported in Sec. 4.1.2 for low-aspect-ratio ellipsoid and cylinder (AR=0.89) of

diameter 56 mm, xr/D are 1.70 and 2.00, respectively. Figure 5.1b, shows the stream-

lines upstream of the sphere. It should be noted that the well-known horseshoe

vortex should be located in this region although it cannot be discerned in Fig.5.1b.

The profiles of the time-averaged streamwise velocity, u, at different streamwise

positions at y/D = 0 are illustrated in Fig. 5.2.

Isocontours of non-dimensional transverse vorticity (ω∗y = ωyH/U) are shown in

Fig. 5.3. In addition to the regions of large positive ωy (counter clockwise rotation)

located in the vicinity of the shear layer separating from the top of the obstacle,

significant negative vorticity is found for each geometry adjacent to the base plane

in the vicinity of the recirculation region. Some negative values of vorticity also

exist on the lee faces of the sphere.

To shed more light on the flow structures upstream of the sphere, especially



www.manaraa.com

129

Figure 5.2: Time-averaged, streamwise velocity, u, profiles along the centerline at
y/D = 0

Figure 5.3: Isocontours of nondimensional spanwise vorticity, ω∗y, downstream
of the sphere. Red shades indicate clockwise rotation and blue shades indicate
counter-clockwise rotation.
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the existence of a horseshoe vortex, laser illumination was employed under the

flume as shown in Fig. 5.4. This particular positioning of the laser was done

so to prevent shadowing around the junction that occurs when the laser is used

from top of the obstacle. While the spatial resolution was high enough (D/90,

where D is sphere diameter), the horseshoe vortex was not observed upstream

of the sphere probably related to convex shape of the sphere at the junction (D

goes to zero) which may increase strong interaction of vortex with the boundary

in agreement with the studies of Ballio et al. (2012). The non-dimensionalized

streamwise velocity profiles, u/U∞, upstream of the sphere will be later shown in

Fig. 5.15 which shows the adverse pressure gradient is weaker near the base plane

than it is at higher levels.

Figure 5.4: Isocontours of nondimensional spanwise vorticity, ω∗y, upstream and
downstream of the sphere using the laser under the flume. Red shades indicate
clockwise rotation and blue shades indicate counter-clockwise rotation.

Seal et al. (1995) noted the spanwise vorticity in the incoming boundary layer at

the junction of a rectangular obstacle moves toward the leading edge and presents

reorganized discrete vortices. This system of vortices interact with vorticity of the

opposite sign generated on the surfaces of the junction. The resulting structure
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is a complex pattern of primary and secondary vortices around the obstacle, un-

dergoing mutual annihilation and deformation by the main flow. In the sphere

geometry, it is therefore expected that the pressure gradient is weak and the vor-

ticity of the opposite sign is not produced and separated in the same way. Ballio

et al. (2012) demonstrated that for different symmetrical geometries, the obstacle

diameter is the main length scale parameter that controls the horseshoe vortex sys-

tem upstream of the body. They showed that with reduction in obstacle diameter,

the vortex system can be expected to vanish and only the weak primary vortex

observed.

In the same boundary layer characteristics, the horseshoe vortex observed up-

stream of the ellipsoids at z/H =0.05 or 0.25δ as shown in Fig. 4.2, where H is the

hight of ellipsoids which is equal to the sphere diameter. A strong horseshoe vortex

was observed upstream of the sphere in the study of Tsutsui (2008) at ReD = 1× 104

while δ/D = 0.46 was 3 times of this study. However, Ozgoren et al. (2013) did

not observe the horseshoe vortex upstream of the sphere, using the laser under the

flume similar to this study, at δ/D = 1.5. Therefore the effect of δ/D is not clear on

existing of the horseshoe vortices on the sphere junction. It will be shown in Sec.

5.2 for the upstream view results that a weak horseshoe vortex exists in the wake

similar to observation of Okamoto (1980) in the same range of δ/D of this study.

The distributions of kinematic Reynolds shear stress (−u′w′/U2) in the wake of

the sphere is shown in Fig. 5.5. Two zones with higher turbulence level occur:

the transitional region of the separated shear layer (downstream of the separation

point at the top of the sphere), and near the bed around the reattachment point.

This observation is quite similar to results of Ozgoren et al. (2012, 2013) for a wall-

mounted sphere. There is only one separation point, near the top of the sphere,

and the Reynolds stresses are significantly lower just after separation compare to

what was observed for the cylinder geometries investigated here. Similar results
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Figure 5.5: Isocontours of Reynolds shear stress, −u′w′/U2, downstream of the
sphere.

were observed for the ellipsoids, as reported in Sec. 4.1.2. Further downstream,

the Reynolds stresses increase significantly due to the transition of the shear layer.

The streamwise turbulence intensities, rms(u′) are illustrated for y/D = 0 and -1

in Figs. 5.6 and 5.7 to compare with Papanicolaou et al. (2012b) which investigated

fully-developed open-channel flow over a rough bed. Values of rms(u′) at y/D = 0

show a maximum at z/D =1 which is the crest of sphere. This is in good agreement

with Papanicolaou et al. (2012b); Ozgoren et al. (2013) and Strom and Papanicolaou

(2007) who observed the maximum of rms(u′) at the crest of a sphere and pebble

cluster. Near the bed, the rms(u′) decreases. At y/D = −1, the rms(u′) profiles

are similar, therefore the rms(u′) profiles have been considered up to z/D =1.5. At

y/D = −1, rms(u′) shows lower magnitude than y/D = 0. The rms(u′) values rise

near the bed in this location.

Figure 5.8 shows profiles of mean wall-normal , w, velocity along the lines at

z = 0.25D , 0.5D, 0.75D and z = 1D on the center plane for the sphere. Near the

bed, at z/D = 0.25, there is a downward flow upstream of the sphere. At this

height, there is also upflow downstream of the sphere. The downwash reaches its

maximum at x/D = 1. At z/D =0.5 and 0.75, also an upwash is evident.
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Figure 5.6: Streamwised turbulence intensity profiles at y/D = 0

Figure 5.7: Streamwised turbulence intensity profiles at y/D = −1
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Figure 5.8: Time-averaged, wall-normal velocity, w, profiles along the centerline at
y/D = 0

5.2 Streamwise Vorticity Distributions

Figure 5.9 and 5.10 display isocontours of streamwise dimensionless vorticity

(ω∗x = ωxD/U) in the wake of the sphere in transverse (y-z) planes at x/D =0, 0.2,

0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.6, 2, and 2.5, with d/H = 3.5 using the experimental

configuration shown in Fig. 3.13. Comparison with the reattachment length,

xr/D =1.90, indicated that the planes at x/D =0 to 1.6 fall within the recirculation

region. Each mean vorticity field was obtained from 3000 instantaneous velocity

fields.

Figure 5.9 contains streamwise vorticity located at x/D =0 to 1 for the sphere.

Figures 5.9a through 5.9c contain streamwise vorticity located at x/D =0 through 0.4

which are before the trailing edge of the sphere. The generation of vorticity into the

streamwise direction (even before shedding) appears to be much more significant



www.manaraa.com

135

than in the case of the ellipsoids. At x/D = 0.4, as shown in Fig. 5.9c, the strong

vortices generated on the circumference of the sphere and shed downstream while

after trailing edge (x/D = 0.5) have been tilted downstream as can be interpreted

from Fig. 5.9d.

The streamwise vorticity distribution in the wake of the sphere at x/D =0.5

is similar to that observed for the streamwise ellipsoid. This distribution is also

similar to that observed by Okamoto (1980) and Pattenden et al. (2005) in the

wake of a sphere and a low-aspect-ratio cylinder and is dominated by the tip and

horseshoe structures. For the sphere (as with the ellipsoid), the tip structures are

almost certainly the streamwise projection of a complex 3D vorticity field shed

around the perimeter of the sphere.

Near the base plane, two pair of vortices are visible in the wake of the sphere,

which have the same sense of rotation, as named in Fig.5.9b: close to the side of the

sphere (hereafter lobes) and further from the obstacle in the transverse planes (well-

known horseshoe vortex) as shown in Fig. 5.9b and 5.9c. The lobes (inner vortices)

are stronger and the further one is weaker. The circulation of these structures and

their evolution will be discussed. At x/D =0.5 and 0.6 (Fig. 5.9d and 5.9e ), a weak

vortex pair inducing upwash is observed at the top of the wake. This vortex pair

(hereafter upper vortices) was not reported in Okamoto’s (1980) study.

Figure 5.9f illustrates the streamwise vorticity patterns at x/D =0.7. The tip

vortices remain at approximately the same vertical position, but they are signifi-

cantly sheared toward the base plane in the wake. The upper vortices are no longer

evident close to the top of the sphere in the wake. It can be deduced from a compar-

ison of Fig. 5.1b and Figs. 5.9d to 5.9e that this vortex pair (upper vortices) exists

only inside the recirculation area and remains distinct from the tip vortices. From

x/D =0.7 to further downstream at x/D =1, the tip and lobe vortices amalgamate

within the recirculation region as shown in Figs 5.9f to 5.9h.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/D = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, and 1 (left to right and top to bottom) in d/H = 3.5.
Red shades indicate counter-clockwise rotation and blue shades indicate clockwise
rotation.



www.manaraa.com

137

(a) (b)

(c) (d)

Figure 5.10: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/D = 1.2, 1.6, 2, and 2.5 (left to right and top to bottom) in d/H = 3.5. Red shades
indicate counter-clockwise rotation and blue shades indicate clockwise rotation.

Figure 5.10 shows the streamwise vorticity at x/D =1.2 to 2.5. As Figs. 5.10a

through 5.10d display, tip vortices are significantly sheared toward the base plane

in the wake of the sphere and the horseshoe lobes are no longer evident in the wake.

In these layers, the tip vortices merge with the legs of the horseshoe vortex, which

have the same sense of rotation, and finally end up in fairly large trailing vortices

as sketched in Pattenden et al (2005). The trailing vortices are quite axisymmetric

in these layers. Similar results were observed further downstream at x/D = 3 and

4. There is a striking resemblance to the streamwise vorticity field around the wall-

mounted sphere demonstrated in Papanicolaou et al. (2012b) despite significant

differences in approach flow and bed characteristics.

The dimensionless circulations Γ∗ = Γ/(UD) of each of the identified structures

at x/D = 0.4 to 0.7 in the wakes of the sphere were computed by integration of
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Figure 5.11: Average dimensionless circulations of structures identified for the
sphere in Fig. 5.9c to Fig. 5.9f and the left/right deviation.

the streamwise component of the vorticity field within an isocontour of ω∗ = 0.07

(at this value, the circulation was found to be insensitive to small changes in ω∗).

Further downstream, due to the ambiguity in the definition of the tip structure

boundaries when it descends to the base plane and combines with the horseshoe

lobes (Figs. 5.9g through 5.10d), no attempt has been made to measure circulation

and distinguish the tip structure from the connected like-signed vorticity. Eviden-

tially, this amalgamation contributes to the increase in circulation of the tip vortices

in the sphere wake. The results are given in Fig. 5.11. Differences in the circula-

tions of the left and right structures represent a larger error than that due to the

PIV measurements, and therefore, the sizes of the error bars are given by Equation

4.1.

The mean circulation magnitude of the upper vortices decreases monotonically

in the range 0.4 ≤ x/D ≤ 0.7, whereas the magnitude of the tip and lobes structures

increase such that both vortex pairs have similar magnitude at x/D =0.5 and 0.6.
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The circulation of the lobes is larger than the horseshoe (HS) vortex circulation of

a streamwise ellipsoid, but smaller than the HS vortex circulation of a transverse

ellipsoid at the same location. The circulation of well-known HS vortex (weak

vortex) has not been illustrated in Fig. 5.11. The streamwise decay of upwash

structures is expected, and may be attributed to enhanced turbulent diffusion and

cross-cancellation of the streamwise structures. However, since there is no source

of vorticity away from the boundaries, the strengthening of the tip structures in the

wake with streamwise distance must be explained by tilting of vorticity into the

upstream orientation by a similar mechanism as described in Sec. 4.1.3, which will

be described later in a discussion of the instantaneous structure and dynamics of

the wakes in Sec. 5.4.

5.3 Shedding Characteristics

Figure 5.12 illustrates the power spectral density function (PSD) of the stream-

wise velocity component measured for the sphere at relative submergence of

d/H = 3.5. The hot-film probe was placed at spanwise locations x/D = 1, 2 and 3,

and for z/D = 0.25, 0.5, 0.75, and 1. The z-axis of the power spectra is offset to allow

comparison between measurements at different locations. Due to symmetry, the

power spectra from either side are nearly identical and only the spectra from one

side of the obstacles are shown. In this case, the broad, weak peak is observed near

the bed at St = 0.21 ( fs = 1.47 Hz) which is only a marginally measurable difference

from that of the transverse ellipsoids. Taneda (1978) reported the Strouhal number

around 0.2 in the subcritical Reynolds number around the sphere which is consis-

tent with this study observation. Notably, this peak is essentially non-existent at

x/H = 1 for all streamwise positions. The peak continues up to z/H = 0.5 further

downstream at x/D = 2, suggesting that the shedding region in the wake grows

outward from the wall with increasing x. It is plausible that this is the shedding

frequency from the spanwise edges of the sphere since the structures shed would
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(a) (b) (c)

Figure 5.12: The power spectral density function of the of the streamwise velocity
component in d/H = 3.5 for sphere at y/D = 1: (a) x/D = 1, (b) x/D = 2, and (c)
x/D = 3. Each spectrum is the average of 20 individual spectra. Spectra are off-set
by constant factor for clarity.

have a highly three-dimensional vorticity field, and only the streamwise projection

of it is seen in the vorticity plots.

A more broad peak is centered around St = 0.025 ( fs = 0.175 Hz) at z/D = 0.5

to 1 for x/D = 1 to 3. Similar to the streamwise ellipsoid, the low-frequency

peaks persist at all three streamwise measurement locations. As illustrated in Sec.

4.2.5, similar peaks were observed for ellipsoidal geometry and low-taper-ratio

triangular plates observed by Castro and Watson (2004). The ratio of primary

(high) peak to low-frequency peak (broad peak) is 8.4 which is closer to this ratio in

the streamwise ellipsoid. The ratio of primary (high) peak to low-frequency peak

(broad peak) is 7.2 and 3.2 for streamwise and transverse ellipsoid, respectively.

Figure 5.13 shows cross-correlations of velocity fluctuations for measurements

at symmetric positions in the wake of the sphere at x/D = 1, y/D = ±1, and
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Figure 5.13: Cross-correlation of fluctuating velocity on opposite side for the sphere
at x/D = 1 and y/D = ±1 and z/H = 0.25 to 1.

equal, varied values of z/H. The auto-correlation function at x/D = 1, y/D = 1,

and z/H = 0.25 is also shown in the figure. The spatial cross-correlations, τ = 0

s, are positive for each wall-normal position, indicating approximately in-phase

shedding on opposite sides of the sphere. A positive spatial correlation is evident

at z/H = 0.75 and 1; however, the values are close to zero near the mid-span and

bed of the sphere. Similar to the streamwise ellipsoid the spatial cross correlation

values are considerably larger at z/H = 1 and 0.75, on the upper part of the sphere

they are possibly weaker near the base due to the interaction with the horseshoe

lobes.

The cross-correlation function is less periodic than for the transverse ellipsoid,

suggesting less organized shedding due to the nearly axisymmetric nature of the

spherical geometry.
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5.4 Proposed Model for the Sphere Wake

As suggested in Sec. 5.2, the model by Okamoto (1980) shown in Fig.2.18

describes some of the preliminary features observed in the wake of the sphere.

However, no explanation is provided for the physical mechanisms governing the

upwash or downwash in the wake. As noted in Sec. 4.2.4, for the ellipsoid wakes,

we propose a model, shown in Fig. 4.25, which does account for the upwash or

downwash in the wake. The dominant structures in the deeply-submerged sphere

wake are the horseshoe vortex (not shown in the Fig. 4.25) and the arch-shaped

shear-layer. As suggested for the streamwise ellipsoid, the dominant mechanism

governing the dynamics of the resulting arch structure to produce the observed

mean flow is Biot-Savart self-induction due to the curvature of the vortex which,

due to the vorticity orientation, would tend to drive the top of the arch upstream

as shown in Fig. 4.25a. However, Okamoto (1980) proposed a model for a wall-

mounted sphere, with inclined arch vortices in the downstream direction such that

their streamwise legs induce an upwash.

As noted in Sec. 5.2, near the base plane, two sets of strong (lobes) and weak

(horseshoe) vortices are observed in the wake. The weak horseshoe vortex, further

from the obstacle in transverse planes, is a well-known horseshoe vortex which

is shown in Okamoto (1980)’s model as shown in Fig. 2.18. The strong vortices

(lobes) are also observed in Okamoto (1980)’s investigation as shown in Fig. 5.14a;

however, he did not discuss the source of these lobes upstream of the obstacle, so

his wake structure is incomplete. Figure 5.14 shows the existence of lobes on the

side of the sphere in both investigations. These lobes have not been illustrated in

Okamoto’s model therefore it is not clear how they fit into a 3D model of the wake.

It is noteworthy that the horseshoe vortex upstream of sphere are weak (in this

study) compared with the approaching boundary layer, therefore they have not

been observed in Fig. 5.1a.
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(a) (b)

Figure 5.14: Existence of horseshoe lobes on the side of the sphere: (a) Horseshoe
vortex behind the sphere observed by the tuft-grid method (Okamoto, 1980), (b)
Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane x/D = 0.5
in d/H = 3.5. Red shades indicate counter-clockwise rotation and blue shades
indicate clockwise rotation.

A model of the arch vortex dynamics was proposed to explain the observed

streamwise vorticity distributions in the sphere wake as shown in Fig. 5.16. The

data presented in Fig. 5.15 offers insight into the origin of the lobes structures.

A wall jet is present as the flow approaches the obstacle, indicating that the ad-

verse pressure gradient upstream of the obstacle is weaker near the base plane than

it is at higher levels (up to z/D = 0.5). Such a strong vertical gradient of streamwise

velocity over the bottom half of the sphere would be expected to tilt vorticity shed

in that region into the streamwise direction. Thus, a plausible mechanism for the

origin of the lobes is ”arch” structures tilted in the streamwise direction. So from

the side, the arches would take on an ”S” shape as illustrated in Fig. 5.16.

The experimental study of Taneda (1978) around the sphere showed that the

orientation of the wake is determined by small perturbations on the surface of the

sphere (Fig. 2.24). For a wall-mounted sphere, there is a large perturbation due to

the pressure of the wake but the results are still in surprising agreement with his

study. This model of wake structure and dynamics correlates well with the obser-

vations of wakes as shown in Fig. 5.11, in which the dominant structures increase in
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Figure 5.15: Mean streamwise velocity profile, u, upstream of the sphere at y/D = 0
and x/D = −1.1 to -0.4

strength with increasing downstream distance. Also, the cross-correlation analysis

shown in Fig. 5.13 demonstrated that the shedding is relatively symmetric, similar

to the ellipsoids at high relative submergence.

Due to the existence of strong lobe vortices at x/D = 0.5 to 1, it will be expected

that the bed shear stress increases on these regions. It will be shown in Sec. 5.5 that

strong shear stress is found on the bed on those locations (z/D = 0.4) in agreement

with this observation as shown Figs. 5.35 and 5.36.

5.5 Shear Stress Distribution

As illustrated in Fig. 3.15 in Sec. 3.3.1, the shear stress distribution was mea-

sured around a wall-mounted sphere as a benchmark for future study. Streamwise

velocity profiles and vectors have been computed for each measurement location

around the sphere. The velocity profiles in the symmetry plane (y = 0) have been



www.manaraa.com

145

Figure 5.16: Proposed evolution of the arch structures for the sphere (self-induction
dominated deformation). The arrows indicate the orientation of the vorticity vector.

illustrated in Fig. 5.17 and 5.18 .

The velocity profiles at y/D = −0.25 and -0.5 have been illustrated in Fig. 5.19

and 5.20 indicating the reverse flow zone. At y/D =-0.5 and at the side of the

obstacle (x/D =0) a strong reverse flow was observed which shows a complex 3D

flow field around the perimeter of the sphere near the mid-span.

The streamwise velocity profiles are similar at y/D = −0.75 and -1 as shown in

Figs. 5.21 and 5.22, which demonstrates that the effect of sphere is not apparent

in the profiles. A quantitative comparison of the boundary layer characteristics in

these profiles with the boundary layer characteristics measured on the plate at the

absence of the obstacle confirms similar findings for δ/D and the shape factor Hs f .

The boundary layer thickness, of δ/D= 0.15 is present at the location of obstacle

(x/D =0) and shape factor Hs f = 1.87. Therefore, the shear stress measurements

from y/D = 0 to -0.5 are of particular interest. In addition, the shear stress up to

y/D = −1 has been presented.
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Figure 5.17: Distribution of velocity vector at y = 0 and x/D = 0.5 to 3.

Figure 5.18: Time-averaged, streamwise velocity, u, profiles at y = 0 and x/D = 0.5
to 3.
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Figure 5.19: Time-averaged, streamwise velocity, u, profiles at y/D = −0.25

Figure 5.20: Time-averaged, streamwise velocity, u, profiles at y/D = −0.5
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Figure 5.21: Time-averaged, streamwise velocity, u, profiles at y/D = −0.75

Figure 5.22: Time-averaged, streamwise velocity, u, profiles at y/D = −1
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Figure 5.23: Time-averaged transverse velocity, v, profiles at x/D = 0.5 to 3 at y = 0

The time-averaged transverse velocity profiles, v, have been computed for each

measurement location around the sphere. As presented in Fig. 5.23, the mean v

profile, along the z-axis at y = 0 and x/D = 0.5 to 3 have values close to zero. The

results in y = 0 have been shown as an example.

Figures 5.24 to 5.27 illustrate the turbulent projected shear stress, τt,p, calculated

in different locations as noted in Sec. 3.2 and based on Eq. (3.5). As illustrated

in Fig. 3.15, the data are available from x/D =0.5 to x/D =3 along the centerline,

y = 0, and not in other x − z locations. At y = 0, the profile shows maximums at

the location of shear layer before the reattachment length (x/D = 2) as shown in

Fig. 5.24. At the trailing edge, x/D =0.5, the profile contains a maximum at the

crest of the sphere (z/D =1). With descent of the shear layer toward the ground,

the profile’s maximums fall to z/D =0.8. After the reattachment point, at x/D = 2

and 3, the maximum of τt,p occurs at z/D =0.2. The τt,p reduces near the bed at all
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Figure 5.24: Turbulent projected shear stress at y = 0 and x/D = 0.5 to 3

measurement locations.

At y/D = −0.25 and at the streamwise locations investigated here, the τt,p values

collapse along most of the depth except for when z/D =0.8 as shown in Fig. 5.25.

This location is the same as locations where maximum τt,p occurred at y = 0. At

y/D = −0.5, which is right on the sphere’s side, no maximum is observed at x/D =0.

At x/D =0.5 to 1.5, the maximum τt,p is visible at z/D =0.4 and the values of τt,p

increase in streamwise direction as shown in Fig. 5.26.

The occurrence of τt,p maximum values at z/D =0.4 is likely due to the presents

of the lobes at the side of the sphere as shown in Figs. 5.9d and 5.9e. As shown in

Fig. 5.27, the shear stress distribution has also been considered in y/D = −1 where

the profiles collapse in together and the values are close to zero.

The mean shear stress profiles at x − z planes have been computed for each

measurement location around the sphere as illustrated in Figs. 5.28 through 5.31.

Figure 5.28 presents the mean shear stress from the velocity profiles in (x−z) planes

as noted in Eq. 3.6.
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Figure 5.25: Turbulent projected shear stress at y/D = −0.25 and x/D = 0.5 to 1.5

Figure 5.26: Turbulent projected shear stress at y/D = −0.5 and x/D = 0 to 1.5
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Figure 5.27: Turbulent projected shear stress at y/D = −1 and x/D = 0 to 1.5

Figure 5.28: Mean shear stress at y = 0 and x/D = 0.5 to 3
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Figure 5.29: Mean shear stress at y/D = −0.25 and x/D = 0.5 to 1.5

These plots demonstrate the gradient of the u velocity in the streamwise direc-

tion, du/dx, along the height of the sphere. At y = 0, the flow decelerates (du/dx < 0)

near the bed up to location x/D = 2 as shown in Fig. 5.28. After this location at

x/D = 2, the flow accelerates (du/dx > 0) as visible in Fig. 5.17. At y/D = −0.25, the

maximum value of mean shear was observed at z/D =0.9 and x/D =0.5 while at

other streamwise locations, as shown in Fig. 5.29 the maximums are slightly below

midspan in agreement with velocity profiles observed for this location as shown in

Fig. 5.19. At the sphere side in y/D = −0.5, the mean shear values at x/D =0 and

above the midspan, are varying between negative and positive values as shown

in Fig. 5.30. At other streamwise locations, τxz reaches the maximum value near

the bed as expected from the observation of velocity profiles in this location as

shown in Fig. 5.20. For comparison the mean shear stress was also measured at

y/D = −0.75 as shown in Fig. 5.31 in which the velocity profiles (Fig. 5.21) have

not been shown the reverse flow zone.
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Figure 5.30: Mean shear stress at y/D = −0.5 and x/D = 0 to 1.5

Figure 5.31: Mean shear stress at y/D = −0.75 and x/D = 0 to 1.5
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The mean shear stress profiles at y− z planes (τyz) have also been computed for

each measurement location around the sphere as an example illustrated in Figs.

5.32 for y = 0 . As expected from the velocity profiles (Fig. 5.23), the shear stress

values are small and their effect in total shear stress will be marginal.

Figure 5.32: Mean shear stress at y = 0 and x/D = 0.5 to 3

While the contour is coarse, the contour plot of mean shear stresses has been

illustrated in Fig. 5.33 in which mean shear stress have been superimposed indi-

cating the the direction of shear stress.

Figures 5.34 through 5.36 illustrate the total shear stress distribution resulting

from adding mean shear stress found in these locations as an example shown in

Fig. 5.28. The mean shear values have been added to their corresponding Reynolds

shear stress. Compared to τt,p in the streamwise symmetry plane, shown in Fig.

5.24, the effect of mean shear stress on total τ along the height and near the bed
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Figure 5.33: Contour plot of mean shear stress at y = 0 to -1 and x/D = 0 to 3

is trivial and no notable change is observed on the τ values. However, the total τ

values increase near the bed at y/D =-0.25 and -0.5, which can be seen by comparing

Fig. 5.35 with Fig. 5.29 and Fig. 5.36 with Fig. 5.30.

In summary, Figs. 5.37 through 5.39 illustrate the total shear stress distribution

in streamwise direction along the height around the sphere. In all the results here,

at z/D =1.2 and 1.4, the total shear does not vary in the streamwise direction

as expected for the area far from the obstacle. At the symmetry plane, y = 0,

except z/D = 1 which is right at the crest of sphere, the total shear increases

in streamwise direction up to reattachment length, x/D = 2, and reduces after

that. However, close to the bed at z/D = 0.035, the total shear stress increases in

agreement of higher stress location near the reattachment point. Similarly Fig. 5.38

and 5.39 demonstrates that close to bed at z/D = 0.035 the shear stress rises toward

x/D = 1.5. At y/D = −0.25, the highest shear stress observed at x/D =0.5 and

z/D =0.8 as shown in Fig. 5.38 which is the location of the free shear layer.



www.manaraa.com

157

Figure 5.34: Total shear stress at y = 0 and x/D = 0.5 to 3

Figure 5.35: Total shear stress at y/D = −0.25 and x/D = 0.5 to1.5

The total shear stress distribution is computed upstream of the sphere at y/D = 0

and x/D = −1.1 to -0.4 using the imaging configuration employed for Fig. 5.4. The

streamwise velocity profiles have been illustrated in Fig. 5.15. In agreement with

the other studies (Sadeque et al., 2008, 2009; Shamloo et al., 2001; Papanicolaou et
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Figure 5.36: Total shear stress at y/D = −0.5 and x/D = 0 to1.5

Figure 5.37: Total shear stress in streamwise direction at y = 0 and x/D = 0.5 to 3

al., 2011; Papanicolaou et al., 2012a), the stress on the bed near the sphere increases

in the streamwise direction, an observation that can be considered for erosion study

and sediment depositional pattern.
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Figure 5.38: Total shear stress in streamwise direction at y/D = −0.25 and x/D = 0.5
to1.5

Figure 5.39: Total shear stress in streamwise direction at y/D = −0.5 and x/D = 0
to1.5

From the measurement reviewed above, the bed shear stress, τ0, has been

computed in each measurement location. Determining the bed shear stress has
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Figure 5.40: Total shear stress in streamwise direction upstream of the sphere at
y/D = 0 and x/D = −1.1 to -0.4

been a challenge in sediment transport studies (Biron et al., 2004; Rowinski et al.,

2005). Biron et al. (2004) conducted a set of experiments on a simple boundary layer

over plexiglas using an acoustic Doppler velocimeter (ADV). The study showed

that Reynolds shear stress varies with height above the bed and reaches a maximum

value at z/d =0.1 (z = 6.2 mm) in open channel flow, where d is the flow depth.

The Reynolds shear stress decreases as the non-dimensional height falls below 0.1,

but as illustrated in Fig. 5.41, it occasionally rises after the initial decrease. It is

not clear whether the decrease in shear stress values in the findings of Biron et al.

(2004) below z/d =0.1 is related to the difference in the instrument measurement.

These observations raise the question of the most appropriate distance from the

bed to obtain a representative shear stress value.

Having more accurate velocimeters which can measure close to the bed, the

question that remains unanswered is the best location for measurements and the

proximity of the location to the bed. In the current study, based on the DPIV
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Figure 5.41: Average vertical profiles of shear stress estimated from Reynolds
method over plexiglas with ADV (from Biron et al. (2004))

spatial resolution of the velocity vector fields, z/D =0.035 (z = 1.75 mm) has been

determined as the representative height to obtain reliable bed shear stress estimates.

This is the height that the correlation windows used to determine the bottom row of

vectors in all the measurement locations do not include portions of the bed image.

The bed images are stationary and would thus skew the vector magnitude. It is

not clear whether the results would change much if we were able to look closer to

the bed.

The τ0 values in the centerline at x/D = 0.5 to 3 have been shown in Table 5.1.

Even though the data is coarse, the contour plot has also been illustrated as shown

in Fig. 5.42 in which bed shear stress vectors have been superimposed indicating

the direction of shear stress. Two area of higher shear stress are visible at the side

of the sphere and near the reattachment point. The higher shear stress at the side of

the sphere is probably related to existence and development of the lobe structures.
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τ0

y/D = 0 y/D = −0.25 y/D = −0.5 y/D = −0.75 y/D = −1

x/D =0 0.240 0.0204 0.0028
x/D =0.5 0.014 0.033 0.112 0.02 0.0048
x/D =1.0 0.031 0.039 0.090 0.028 0.0023
x/D =1.5 0.010 0.060 0.207 0.030 0.007
x/D =2.0 0.022
x/D =2.5 0.069
x/D =3.0 0.111

Table 5.1: Bed shear stress, τ0, in z/D =0.035 at x/D = 0.5 to 3 and y = 0

Figure 5.42: Contour plot of bed shear stress, τ0, in z/D =0.035 at x/D = 0.5 to 3
and y = 0
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Particle image velocimetry and thermal anemometry were used to investigate

the shedding characteristics and the wake structures generated by five different

low-aspect-ratio obstacles: ellipsoids of aspect ratio (H/D) 0.67 (transverse ellip-

soid) and 0.89 (streamwise ellipsoid), two cylindrical obstacles of the same aspect

ratios as the ellipsoids, and a sphere. Despite the relatively subtle difference be-

tween the two ellipsoid geometries, the time-averaged streamwise vorticity dis-

tribution in the wakes revealed striking disparities. Whereas the the dominant

structures in the wake of the streamwise ellipsoid consisted of a tip vortex pair

inducing downwash and the horseshoe vortices near the ground plane, the trans-

verse ellipsoid exhibited a dominant base vortex pair oriented such as to induce

an upwash in the wake. This latter observation is unique in that base vortices

have not been previously reported for low-aspect-ratio obstacles in thin bound-

ary layers with thickness significantly smaller than the obstacle dimensions. The

flow structures were shown to be qualitatively robust with significant variations in

free-stream turbulence intensity; however, the circulations of the mean streamwise

structures were significantly greater in the low-turbulence case. In contrast, both

cylinder wakes contained strong tip vortices with weaker base vortices also present.

Following a similar trend to the ellipsoids, the strength of the base structures in the

cylinder wakes was inversely related to aspect ratio. Streamwise features observed

in the mean wake of the sphere, included tip and horseshoe structures, and a weak

opposite- sign vortex pair near the top of the obstacle.

A model of the arch vortex dynamics was proposed to explain the observed

streamwise vorticity distributions in the ellipsoid wakes in which the evolution of

the arch structures is governed by two competing mechanisms: Biot-Savart self-
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induction and the deformation due to the external shear flow. It is proposed that

the balance between these mechanisms is governed by the curvature of the obstacle

profile. While the cylinder wake is more complex due to the separation of arch and

tip structures from the square corners at the free end, the general trend of base vortex

strength with variation in cylinder aspect ratio is consistent with that observed in

the case of the ellipsoids. The phase measurements verified downstream and

upstream tilting of structures shed by the transverse and streamwise ellipsoids,

respectively, as hypothesized by Hajimirzaie et al. (2012). The relative simplicity of

the ellipsoid wakes make them an archetypical model for understanding somewhat

more complex flows such as that of the sphere wake.

The dominant structures in the deeply-submerged sphere wake are the horse-

shoe vortex and the arch-shaped shear-layer. As suggested for the streamwise

ellipsoid, the dominant mechanism governing the dynamics of the resulting arch

structure to produce the observed mean flow is Biot-Savart self-induction due to

the curvature of the vortex which, due to the vorticity orientation, would tend to

drive the top of the arch upstream. Near the base plane, two pair of vortices are

observed in the wake of the sphere, which have the same sense of rotation: close to

the side of the sphere (lobes) and further from the obstacle in the transverse planes

(well-known horseshoe vortex). The origin of these was proposed to be streamwise

tilting of the base of the arch structures due to a wall jet that forms in the vicinity

of the junction.

Spectral measurements at high relative submergence of d/H = 3.9 revealed that

transverse and streamwise ellipsoids exhibited weak dominant shedding frequen-

cies at St = 0.188 and 0.183, respectively. Cross-correlation analysis demonstrated

that the shedding was symmetric in nature. Broad, lower-frequency peaks were

observed in many cases, which were also apparent in other studies. A previously-

proposed hypothesis, that these peaks are essentially beat frequencies, seems un-
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likely in this case since, in the present study, spectra have been observed which

contain only these peaks. Alternatively, we have observed an intermittent collapse

of the recirculation region which is consistent with these features. Much weaker

peaks were observed at St = 0.084 for the low-aspect-ratio cylinder (AR=0.67)

and 0.065 for the high-aspect-ratio cylinder (AR=0.89). In the wake of the sphere, a

weak dominant frequency is observed at St = 0.20 close to the obstacle junction and

the cross-correlation function for symmetric measurements in the wake indicates

symmetric shedding.

Relative submergence (d/H) was varied systematically for the two ellipsoids.

For the transverse ellipsoid, the base vortex circulation was found to vary approx-

imately with the inverse of the flow depth for d/H ≤ 4 while it was relatively

insensitive to flow depth for d/H ≥ 4, consistent with previous observations in free

surface flows. In contrast, for the streamwise ellipsoid, a strong base vortex was

observed at d/H = 1, and essentially no base vortex for d/H ≥ 2.5. While reducing

relative submergence to 2.5 had no effect on the dominant Strouhal numbers for

the transverse and streamwise ellipsoids, the peaks were found to broaden slightly,

indicating that the increased proximity of the top boundary has an effect on the

shedding behavior. Likewise, in the wake of the streamwise ellipsoid, Hajimirzaie

et al. (2012) did not find the circulations of vortex structures measured in stream-

wise planes to vary significantly; however, for the transverse ellipsoid, base vortex

circulation was found to vary inversely with relative submergence. At d/H = 1,

the dominant shedding Strouhal numbers increased to St = 0.345 and 0.357 for the

transverse and streamwise ellipsoids, respectively. This change was concomitant

with significantly-increased base vortex strengths for both ellipsoids, as shown by

Hajimirzaie et al. (2012). The shedding behavior also changed from a symmetric

mode to a antisymmetric mode with increased coherence for the transverse ellipsoid

and cylinders, likely due to the reduction in three-dimensionality and the change
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in topology of the domain as the obstacle now spans the entire height. Surprisingly,

the streamwise ellipsoid wake actually experienced decreased coherence.

Other studies of tapered obstacles (plates, cones, and pyramids) have defined a

taper ratio or aspect ratio (of which the definitions are equivalent for obstacles that

do not penetrate through the boundary) ARav, as defined in Sec. 4.2.5. Whereas the

values of the cylinder aspect ratios AR and ARav are identical by this definition, the

transverse and streamwise ellipsoids have equivalent aspect ratios of ARav = 0.794

and 1.031, respectively. For this range of ARav, the presence and nature of periodic

vortex shedding is highly varied as indicated in Sec. 4.2.5. Comparing similarly

tapered geometries, Castro and Watson (2004) observed St = 0.18 – nearly identical

to that observed for the ellipsoid geometries at d/H = 3.9 – for triangular plates

of ARav = 0.58. On the other hand, Martinuzzi and AbuOmar (2003) measured

St = 0.33 for a pyramid of ARav = 1. However, they also proposed a complex

multi-vortex wake structure that evidently relies on distinct separation points at

the pyramid edges as well as important afterbody effects, so it is not surprising

that the shedding frequency is quite distinct from the ellipsoids.

Local bed shear stress measurements, estimated from Reynolds stress, have

been computed in the wake of the sphere to provide insight into the sediment

depositional patterns surrounding the obstacle. The bed shear stress measurements

reveal that two areas at the side and close to reattachment length have the higher

values. The higher stress near the side of the sphere are probably related to lobe

structures observed at the side of the sphere.

The sensitivity of the mean wake vorticity distribution to obstacle shape and

relative submergence, quantified in this dissertation, provides controls with which

to further probe the dynamics of wake structures and the related transport mecha-

nisms. In addition, the fact that relatively subtle changes in geometry can provide

such dramatic changes in flow patterns has implications for the transport of mo-
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mentum and scalars in applications of flow around wall-mounted bodies.

The shear stress distribution measured around the sphere may help in the

prediction of sediment transport in mountain stream.

6.2 Future Work

In a general sense, the observations presented in Ch. 4 and the methods de-

veloped provide a framework that can be used to increase our understanding of

turbulent flow dynamics and structure. Therefore, this work provides insight into

the modeling and control of flow over wall-mounted bodies. These results can

also elucidate roles of shape and relative submergence which is not previously

discussed in the literature, and introduces new wake vorticity fields that cannot be

explained by existing models.

While the mean wake structure and shedding characteristics have been docu-

mented around the low-aspect-ratio obstacles of interest, and correlated with bed

shear stress in the case of the sphere, many details of the dynamics of these wakes

are still unresolved. As described in Fig. 6.1, conditional averaging of DPIV data

can be employed based on, for example the phase of a hot film signal determined

from FFT or wavelet analysis, to better understand the dynamics of large-scale

structures in the wake.

Also using the knowledge gained and methods developed in this boundary

layer experiment, we can consider the more complex problem of open-channel flow

over a submerged obstacle on a rough bed. This configuration has direct application

to sediment transport in mountain streams and is additionally complicated at

low relative submergence by an active free surface. In particular, the following

questions are of interest:

1. What is the time-averaged spatially resolved bed shear stress distribution

around the spherical obstacle with varying Reynolds number, Froude number,

Shields parameter, and relative submergence?
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Figure 6.1: Graphic chart of future work for dynamic shedding behavior

2. How do the mean flow structure and its dynamics govern these stresses?

Figures 6.2 and 6.3 illustrate an experimental setup, which will be facilitate

flow measurements around a sphere atop a rough bed under the high (d/D =3.5),

intermediate (d/D =1.2), and low (d/D = 0.8), relative submergence regimes.
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Figure 6.2: An experimental setup for upstream view at low relative submergence
for the open channel tests

Figure 6.3: An experimental setup for plan view measurement at low relative
submergence for the open channel tests
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APPENDIX A
UNCERTAINTY ANALYSIS-DPIV

Based on the literature and quality of the data, an uncertainty in the PIV data

was assumed and from the assumed values, a general uncertainty for each of the

terms was calculated, designated by σ.

A.1 Transverse Plane

Factors that influence PIV errors are large particle sizes, improper seeding of

particles, particle displacement, and out-of-plane motion (Adrian, 2005; Huang

et al., 1997; Raffel et al., 2007). Huang et al. (1997) proposed a representative

uncertainty in the displacement determined by DPIV analysis to be approximately

0.1 pixels. Obtaining accurate estimates of PIV uncertainty in situ is not possible

due to the widely-varying sources of error from vector to vector. With the influence

of these publications, advancements in technology, and the quality of the data

obtained, the assumed uncertainties for the change in pixel position for σ∆x, σ∆y,

σ∆z were 0.1 pixels.

Yg and Zg are spacing between vectors generated in the PIV vector files in

the spanwise direction, and spacing between vectors created in the PIV vector

files in the vertical direction (z-direction), respectively. For transverse (y-z) plane,

Yg= Zg=1.3699 mm. In this analysis, the uncertainties in the vector spacing (σXg ,

σYg , and σZg) are assumed to be negligible. For a transverse plane, the pixel shift

was approximately 2-3 pixels which resulted in an uncertainty in the z- and y-

component of the velocity to be approximately 3%.

A conservative estimate for the uncertainties in the spanwise velocity and

streamwise vorticities were calculated and are demonstrated in the subsequent

equations. The velocity vectors are calculated using PIV by first using a cross-

correlation analysis to determine a mean particle displacement within a sub-

window of the domain between the two images and dividing by the time interval
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separating the image pair (Raffel et al., 2007). The spanwise velocity, Uz, can be

defined in this manner and is shown in Eq. A.1.

Uz =
∆z

M∆t
(A.1)

Where M is the magnification ratio. The total uncertainty in the spanwise

velocity can be obtained by once again taking partial derivatives of Uz with respect

to the terms that will contribute error. The cameras were calibrated with the laser

plane using a ruler. Since the calibration was of high quality, the uncertainty in the

magnification ratio is assumed to not be a major component of uncertainty in the

spanwise velocity. The resulting uncertainty for the spanwise velocity is given in

Equation A.2.

σUZ
=













(

∂Uz

∂∆z
σ∆z

)2

+

(
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σ∆t

)2










1
2

(A.2)

The uncertainty associated with ∆t is determined by the laser timing and and

assumed to be negligible. The resulting uncertainty used in the analysis for the

spanwise velocity is:

σUz =
σ∆z

M∆t
(A.3)

During the processing of the DPIV images, a window size of 32 × 32 was used.

This implied the magnification ratio was 0.0428 mm/pixel. Lastly, the ∆t used

between laser pulses for the data acquired was 2200 microseconds. Using these

values, the uncertainties can be obtained as seen below:

σUz = 1.9455
mm

s
(A.4)

In similar way, σUy can be calculated 1.9455 mm
s

. Out-of-plane vorticity components
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were calculated using the central difference scheme presented in Equation 3.7. To

determine the uncertainty in the vorticity values, the potential sources of errors

were added in quadrature as demonstrated below with simplifications:

σωx =















σ2
Uz

4Y2
g

+
σ2

Uy

4Z2
g















1
2

(A.5)

Then the uncertainty can be obtained σωx=1.0042mm
s

. The uncertainty in Γ cab

be determine from:

Γx = ωx∆y∆z (A.6)

And therefore:

σΓx = σωx∆y∆z (A.7)

Then the uncertainty can be obtainedσΓx=1.8845mm2

s
. Therefore, in the case of the

transverse planes, we looked at the transverse ellipsoid’s left tip and base vortices

to do the uncertainty analysis. The very weak left tip vortex yielded uncertainties

in the Γx and ωx to be 3.12% and 16.83%, respectively while the left base vortex had

relative uncertainty values of 0.13% and 1.67% for Γx and ωx, respectively. We then

approximated the overall uncertainties in Γx, σΓx/Γx, and ωx, σωx/ωx, to be 1.5% and

8%, respectively.

In summary for transverse planes, uncertainties in velocity and vorticity were

estimated to be 3% and 8%. The resulting measurement uncertainty in streamwise

vortex circulation (2%) does not include errors due to asymmetry in the wake or

ambiguity in the boundary of the vortex. More representative uncertainties in

circulation based on the data are given in Sec. 4.1.3.
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A.2 Symmetry Plane

In the streamwise direction, the boundary layer experiments yielded an approx-

imate particle shift of 9 pixels which resulted in an uncertainty of 1% for the x- and

z-component of the velocity. As far as the streamwise direction is concerned, the

transverse ellipsoid was used again which resulted in an approximate uncertainty

of Γx and ωy of 0.0066% and 0.315%, respectively.
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APPENDIX B
UNCERTAINTY ANALYSIS-THERMAL ANEMOMETRY

B.1 Strouhal Number

To determine the uncertainty in the Strouhal number, the potential sources of

errors were added in quadrature as demonstrated below. The Strouhal number

definition is:

fs =
fsd

U∞
(B.1)

The uncertainty in the diameter is assumed to be negligible.

σSt =













(

∂St

∂ f
σ f

)2

+

(

∂St

∂ U∞
σU∞

)2










1
2

(B.2)

The uncertainty on frequency can be calculated from the sample standard de-

viation, SD, and the degrees of freedom, N as:

fs = t
SD
√

N
(B.3)

For sample of N=10 and t=2.179 within a 95% confidence interval, SD was

measured 0.14 which yields the σ fs=0.096. For diameter of 75 mm and U∞=0.35

m/s, the uncertainty in the Strouhal number was measured σSt=2.5 %.
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